Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806819

RESUMO

Herein, we investigated the effect of the support modification (Sibunit carbon) with diazonium salts of Pd and Pd-Au catalysts on furfural hydrogenation under 5 bars of H2 and 50 °C. To this end, the surface of Sibunit (Cp) was modified with butyl (Cp-Butyl), carboxyl (Cp-COOH) and amino groups (Cp-NH2) using corresponding diazonium salts. The catalysts were synthesized by the sol immobilization method. The catalysts as well as the corresponding supports were characterized by Fourier transform infrared spectroscopy, N2 adsorption-desorption, inductively coupled plasma atomic emission spectroscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Hammet indicator method and X-ray photoelectron spectroscopy. The analysis of the results allowed us to determine the crucial influence of surface chemistry on the catalytic behavior of the studied catalysts, especially regarding selectivity. At the same time, the structural, textural, electronic and acid-base properties of the catalysts were practically unaffected. Thus, it can be assumed that the modification of Sibunit with various functional groups leads to changes in the hydrophobic/hydrophilic and/or electrostatic properties of the surface, which influenced the selectivity of the process.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673079

RESUMO

Herein, it has been shown that betulin can be transformed into its biologically active oxo-derivatives (betulone, betulinic and betulonic aldehydes) by liquid-phase oxidation over supported silver catalysts under mild conditions. In order to identify the main factors determining the catalytic behavior of nanosilver catalysts in betulin oxidation, silver was deposited on various alumina supports (γ-alumina and boehmite) using deposition-precipitation with NaOH and incipient wetness impregnation methods, followed by treatment in H2 or O2. Silver catalysts and the corresponding supports were characterized by X-ray diffraction, nitrogen physisorption, inductively coupled plasma optical emission spectroscopy, photoelectron spectroscopy and transmission electron microscopy. It was found that the support nature, preparation and treatment methods predetermine not only the average Ag nanoparticles size and their distribution, but also the selectivity of betulin oxidation, and thereby, the catalytic behavior of Ag catalysts. In fact, the support nature had the most considerable effect. Betulin conversion, depending on the support, increased in the following order: Ag/boehmite < Ag/boehmite (calcined) < Ag/γ-alumina. However, in the same order, the share of side reactions catalyzed by strong Lewis acid centers of the support also increased. Poisoning of the latter by NaOH during catalysts preparation can reduce side reactions. Additionally, it was revealed that the betulin oxidation catalyzed by nanosilver catalysts is a structure-sensitive reaction.

3.
Nanomaterials (Basel) ; 10(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370180

RESUMO

This study aims to identify the role of the various electronic states of gold in the catalytic behavior of Au/MxOy/TiO2 (where MxOy are Fe2O3 or MgO) for the liquid phase oxidation of n-octanol, under mild conditions. For this purpose, Au/MxOy/TiO2 catalysts were prepared by deposition-precipitation with urea, varying the gold content (0.5 or 4 wt.%) and pretreatment conditions (H2 or O2), and characterized by low temperature nitrogen adsorption-desorption, X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDX), scanning transmission electron microscopy-high angle annular dark field (STEM HAADF), diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy of CO adsorption, temperature-programmable desorption (TPD) of ammonia and carbon dioxide, and X-ray photoelectron spectroscopy (XPS). Three states of gold were identified on the surface of the catalysts, Au0, Au1+ and Au3+, and their ratio determined the catalysts performance. Based on a comparison of catalytic and spectroscopic results, it may be concluded that Au+ was the active site state, while Au0 had negative effect, due to a partial blocking of Au0 by solvent. Au3+ also inhibited the oxidation process, due to the strong adsorption of the solvent and/or water formed during the reaction. Density functional theory (DFT) simulations confirmed these suggestions. The dependence of selectivity on the ratio of Brønsted acid centers to Brønsted basic centers was revealed.

4.
Nanomaterials (Basel) ; 10(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952186

RESUMO

The efficiency of Au/TiO2 based catalysts in 1-phenylethanol oxidation was investigated. The role of support modifiers (La2O3 or CeO2), influence of gold loading (0.5% or 4%) and redox pretreatment atmosphere, catalyst recyclability, effect of oxidant: tert-butyl hydroperoxide (TBHP) or O2, as well as the optimization of experimental parameters of the reaction conditions in the oxidation of this alcohol were studied and compared with previous studies on 1-octanol oxidation. Samples were characterized by temperature-programmed oxygen desorption (O2-TPD) method. X-ray photoelectron spectroscopy (XPS) measurements were carried out for used catalysts to find out the reason for deactivation in 1-phenylethanol oxidation. The best catalytic characteristics were shown by catalysts modified with La2O3, regardless of the alcohol and the type of oxidant. When O2 was used, the catalysts with 0.5% Au, after oxidative pretreatment, showed the highest activity in both reactions. The most active catalysts in 1-phenylethanol oxidation with TBHP were those with 4% Au and the H2 treatment, while under the same reaction conditions, 0.5% Au and O2 treatment were beneficial in 1-octanol oxidation. Despite the different chemical nature of the substrates, it seems likely that Au+(Auδ+) act as the active sites in both oxidative reactions. Density functional theory (DFT) simulations confirmed that the gold cationic sites play an essential role in 1-phenylethanol adsorption.

5.
Molecules ; 21(4): 486, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27089310

RESUMO

The catalytic properties of modified Au/TiO2 catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H2 TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity.


Assuntos
Ouro/química , Lantânio/química , Oxirredução , Óxidos/química , Titânio/química , Catálise , Nanoestruturas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...