Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 21(6): 611-626, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28441889

RESUMO

INTRODUCTION: Amino acids (AAs) support a broad range of functions in living organisms, including several that affect the immune system. The functions of the immune system are affected when free AAs are depleted or in excess because of external factors, such as starvation, or because of genetic factors, such as inborn errors of metabolism. Areas covered: In this review, we discuss the current insights into how free AAs affect immune responses. When possible, we make comparisons to known disease states resulting from inborn errors of metabolism, in which changed levels of AAs or AA metabolites provide insight into the impact of AAs on the human immune system in vivo. We also explore the literature describing how changes in AA levels might provide pharmaceutical targets for safe immunomodulatory treatment. Expert opinion: The impact of free AAs on the immune system is a neglected topic in most immunology textbooks. That neglect is undeserved, because free AAs have both direct and indirect effects on the immune system. Consistent choices of pre-clinical models and better strategies for creating formulations are required to gain clinical impact.


Assuntos
Aminoácidos/metabolismo , Sistema Imunitário/imunologia , Erros Inatos do Metabolismo/imunologia , Aminoácidos/imunologia , Animais , Humanos , Fatores Imunológicos/farmacologia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/terapia , Terapia de Alvo Molecular
2.
Drug Resist Updat ; 25: 13-25, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27155373

RESUMO

Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Ácido Mevalônico/metabolismo , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Progressão da Doença , Humanos , Hidroximetilglutaril-CoA Redutases/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/metabolismo , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proto-Oncogene Mas
3.
J Control Release ; 232: 143-51, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27084489

RESUMO

Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing.


Assuntos
Colesterol/administração & dosagem , Colesterol/farmacocinética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacocinética , Albumina Sérica/administração & dosagem , Albumina Sérica/farmacocinética , Animais , Linhagem Celular Tumoral , Colesterol/química , Fator VII/genética , Feminino , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Leucócitos Mononucleares/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/química , Albumina Sérica/química , Fator de Necrose Tumoral alfa/metabolismo
4.
Pharm Res ; 32(4): 1462-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25361867

RESUMO

PURPOSE: In this work we specifically investigate the molecular weight (Mw) dependent combinatorial properties of hyaluronic acid (HA) for exhibiting stealth and targeting properties using different Mw HA nanoshells to tune nanoparticle retargeting to CD44-expressing cancer cells. METHODS: HA of different Mw was covalently grafted onto model polystyrene nanoparticles and advanced surface analysis by X-ray photoelectron spectroscopy performed to quantify and evaluate the effect of the coating procedure. Specific CD44-mediated retargeting was investigated by flow cytometry and confocal microscopy using isogenic D44-deficient and CD44-expressing MCF-7 breast adenocarcinoma cells. RESULTS: Surface analysis demonstrated effective surface coating with 33, 260 and 900 kDa HA resulting in increased colloidal stability and highly negative surface charge due to presentation of up to 4.7% carboxyl groups that indicates an extended and non-constricted HA polymer surface. Reduced non-specific particle interaction in CD44(-) cells was shown for all HA nanoshells but CD44-dependent cellular retargeting and internalization in CD44(+) cells was highly dependent on the coating HA Mw properties. CONCLUSION: The combination of advanced surface characterization and evaluation of particle interactions in isogenic cells with and without CD44 receptor demonstrates direct evidence for the dual capacity of HA for stealth and CD44-mediated retargeting tunable by the HA molecular weight.


Assuntos
Portadores de Fármacos/química , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Nanoconchas/química , Poliestirenos/química , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/administração & dosagem , Células MCF-7 , Microscopia Confocal , Peso Molecular , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Propriedades de Superfície
5.
Nucleic Acids Res ; 40(10): 4653-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22287630

RESUMO

Small interfering RNAs (siRNAs) are promising new active compounds in gene medicine but the induction of non-specific immune responses following their delivery continues to be a serious problem. With the purpose of avoiding such effects chemically modified siRNAs are tested in screening assay but often only examining the expression of specific immunologically relevant genes in selected cell populations typically blood cells from treated animals or humans. Assays using a relevant physiological state in biological models as read-out are not common. Here we use a fish model where the innate antiviral effect of siRNAs is functionally monitored as reduced mortality in challenge studies involving an interferon sensitive virus. Modifications with locked nucleic acid (LNA), altritol nucleic acid (ANA) and hexitol nucleic acid (HNA) reduced the antiviral protection in this model indicative of altered immunogenicity. For LNA modified siRNAs, the number and localization of modifications in the single strands was found to be important and a correlation between antiviral protection and the thermal stability of siRNAs was found. The previously published sisiRNA will in some sequences, but not all, increase the antiviral effect of siRNAs. The applied fish model represents a potent tool for conducting fast but statistically and scientifically relevant evaluations of chemically optimized siRNAs with respect to non-specific antiviral effects in vivo.


Assuntos
Antivirais/química , RNA Interferente Pequeno/química , Animais , Antivirais/imunologia , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Animais , Motivos de Nucleotídeos , Oligonucleotídeos/química , Oncorhynchus mykiss , Interferência de RNA , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/farmacologia , Temperatura
6.
Mol Biosyst ; 6(5): 862-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20567772

RESUMO

Small interfering RNAs (siRNAs) are now established as a favourite tool to reduce gene expression by RNA interference (RNAi) in mammalian cell culture. However, limitations in potency, duration, delivery and specificity of the gene knockdown (KD) are still major obstacles that need further addressing. Recent studies have successfully improved siRNA performance by the introduction of several types of chemical modifications. Here we explore the effect of incorporating unlocked nucleic acid (UNA) into siRNA designs. The acyclic UNA monomers lack the C2'-C3'-bond of the RNA ribose ring and additively decrease nucleic acid duplex thermostability. We show that UNA-modifications of siRNAs are compatible with efficient RNAi and can improve siRNA performance both in vitro and in vivo. In particular, we find that the destabilizing properties of UNA are well suited to enhance the potency of siRNAs which are heavily modified by other chemical modifications such as locked nucleic acid (LNA), C4'hydroxymethyl-DNA (HM), 2'-O-methyl-RNA (OMe), DNA and 2'-Flouro-DNA (F). Interestingly, we find that naked, but UNA-modified siRNAs have dramatically increased biostability in mice and can induce potent KD in a xenograft model of human pancreas cancer. Hereby UNA constitutes an important type of chemical modification for future siRNA designs.


Assuntos
RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Estrutura Molecular , Interferência de RNA , Estabilidade de RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nucleic Acids Res ; 38(17): 5761-73, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20453030

RESUMO

Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2-8 of either siRNA strand counting from the 5'-end) and complementary sequences in the 3'UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA-target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low.


Assuntos
RNA Interferente Pequeno/química , Linhagem Celular Tumoral , Genes Reporter , Humanos , Ácidos Nucleicos/química , Interferência de RNA , RNA Antissenso/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...