Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(11): e202400238, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578057

RESUMO

Photoswitching materials have emerged as a promising class of compounds that possess manifold interesting properties rendering their widespread use from photoswitches, regulators to optoelectronic devices, security technologies and biochemical assays. Diarylethenes (DAE) constitute one such category of photoswitchable compounds, where the key features of stability, photoisomerization wavelengths, quantum yield and variability in the photoisomers significantly depend on their derivatization. The last decade has witnessed a surge in the engagement of DAEs in different areas of chemical and biological sciences, like biomarkers, controlled generation of singlet oxygen, photo-dynamic therapy, chemosensing, catalysis, etc. In all the cases, the photoswitchability of DAE is the principal regulating factor along with its emission properties according to the appended groups. Previous reviews on applications of DAE-based systems did not predominantly cover all the aspects of biological and industrial implementations. They have covered only one field of application either in the biological science or in the synthetic aspect or photochromic aspects only. This review is a coalition of all those aspects in last six years. Here the variation of properties of the DAE systems with respect to structural diversifications have been discussed in detail along with their potential applications in bioimaging of cells, regulating singlet oxygen generation for photodynamic therapy and catalysis of organic reactions, and their future prospects. A tabular presentation of the photophysical properties of DAE derivatives adds to the basic understanding of this subject at a glance. We hope that this cumulative collection of contemporary research on DAE, as presented in this review, will enhance the knowledge of the readers about synthetic design anticipating their properties well in advance, and will certainly motivate researchers to generate new DAE architectures with superior chemical and biological properties in future.


Assuntos
Etilenos , Fotoquimioterapia , Oxigênio Singlete , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Catálise , Humanos , Etilenos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Processos Fotoquímicos , Imagem Óptica
2.
Chemistry ; 30(8): e202303776, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38055713

RESUMO

We report the Cu(II) catalyzed synthesis of ß-disubstituted ketones from styrene via oxo-alkylation with unactivated cycloalkanes as the alkylating agent in presence of tert-butylhydroperoxide (TBHP) and 1-methylimidazole as oxidant and base respectively. ß-disubstituted ketones are known to be synthesized by using either expensive Ru/Ir complexes, or low-cost metal complexes (e. g., Fe, Mn) with activated species like aldehyde, acid, alcohol, or phthalimide derivatives as the alkylating agent, however, use of unactivated cycloalkanes directly as the alkylating agent remains challenging. A wide range of aliphatic C-H substrates as well as various olefinic arenes and heteroarene (35 substrates including 14 new substrates) are well-tolerated in this method. Hammett analysis shed more light on the substitution effect in the olefinic part on the overall mechanism. Furthermore, the controlled experiments, kinetic isotope effect study, and theoretical calculations (DFT) enable us to gain deeper insight of mechanistic intricacies of this new simple and atom-economic methodology.

3.
Chem Asian J ; 18(22): e202300755, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37814533

RESUMO

Acyl hydrazones are a class of synthetically important organic compounds that are recurrently in high demand for synthesis and use in various fields of chemistry and biology. We report the first Co(II) catalyzed one-component one-pot sustainable synthesis of acyl hydrazones only from acyl hydrazides under mild reaction conditions. Traditional and contemporary methodologies use two components (usually acyl hydrazides and aldehydes/ketones/alcohols/styrene) as the coupling partners. Our protocol, on the other hand, involves the in situ generation of aldehyde intermediate (detected by gas chromatography) from the acyl hydrazide, which then undergoes condensation with another molecule of the same acyl hydrazide in the same pot to yield acyl hydrazones in presence of mild base K2 CO3 and low-cost Co(OAc)2 ⋅ 4H2 O as catalyst. This method shows good functional group tolerance with good to excellent yield of products. Furthermore, some of the resulting acyl hydrazones have been used as synthetic precursors and explored in various post-synthetic modifications to afford N-heterocyclic compounds. Furthermore, photoswitchable properties of few synthesized acyl hydrazones are also explored using their E/Z isomerization around the C=N bond, as realized by high-pressure liquid chromatography (HPLC) and UV-vis spectroscopic studies.

4.
Nanoscale ; 15(31): 12995-13008, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37483089

RESUMO

Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes via chemical anchors by applying a high source-drain bias (>1 V), the conductance was limited to <0.1G0, G0 being the quantum of conductance. Herein, we report electronic transport measurements by directly connecting a ferrocene molecule between Au electrodes under ambient conditions in a mechanically controllable break junction setup (MCBJ), revealing a conductance peak at ∼0.2G0 in the conductance histogram. A similar experiment was repeated for ferrocene terminated with amine (-NH2) and cyano (-CN) anchors, where conductance histograms exhibit an extended low conductance feature, including the sharp high conductance peak, similar to pristine ferrocene. The statistical analysis of the data and density functional theory-based transport calculation suggest a possible molecular conformation with a strong hybridization between the Au electrodes, and that the Fe atom of ferrocene is responsible for a near-perfect transmission in the vicinity of the Fermi energy, leading to the resonant transport at a small applied bias (<0.5 V). Moreover, calculations including van der Waals/dispersion corrections reveal a covalent-like organometallic bonding between Au and the central Fe atom of ferrocene, having bond energies of ∼660 meV. Overall, our study not only demonstrates the realization of an air-stable highly transmitting molecular junction, but also provides important insights about the nature of chemical bonding at the metal/organo-metallic interface.

5.
J Org Chem ; 88(13): 8955-8968, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294694

RESUMO

The acceptorless dehydrogenative coupling (ADC) between alcohols and amines to produce imines has been achieved mostly by employing precious-metal-based complexes or complexes of earth-abundant metal ions with sensitive and complicated ligand systems as catalysts mostly under harsh reaction conditions. Methodologies using readily available earth-abundant metal salts as catalysts without the requirement of ligand, oxidant, or any external additives are not explored. We report an unprecedented microwave-assisted CoCl2-catalyzed acceptorless dehydrogenative coupling of benzyl alcohol and amine for the synthesis of E-aldimines, N-heterocycles, and H2 under mild condition, without any complicated exogenous ligand template, oxidant, or other additives. This environmentally benign methodology exhibits broad substrate scope (43 including 7 new products) with fair functional-group tolerance on the aniline ring. Detection of metal-associated intermediate by gas chromatography (GC) and HRMS, H2 detection by GC, and kinetic isotope effect reveal the mechanism of this CoCl2-catalyzed reaction to be via ADC. Furthermore, kinetic experiments and Hammett analysis with variation in the nature of substituents over the aniline ring reveal the insight into the reaction mechanism with different substituents.


Assuntos
Álcool Benzílico , Complexos de Coordenação , Ligantes , Micro-Ondas , Compostos de Anilina , Aminas , Oxidantes
6.
Org Biomol Chem ; 20(45): 8977-8987, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326160

RESUMO

A feasible one-pot synthesis of dimerized arene and heteroarene systems was achieved by employing 2 mol% of Co(II)catalyst 1 along with Zn dust at room temperature in 2-4 h. The Co(II)/Zn(0) system in situ generates Co(I) as an active catalyst. This catalyst can effectively substitute expensive Pd catalysts and hygroscopic and air-sensitive ZnCl2, generally employed to generate such dimerized heterocyclic cores. Pd is replaced with the Co core and anhydrous ZnCl2 is replaced with easy-to-handle and highly economical Zn dust in its activated form. While conventional methods use high temperature and/or longer reaction times, our synthetic strategy achieves the desired goal with high % yields of products (70-89%) at room temperature in a moderate reaction time (2-4 h), replacing expensive reagents at the same time. The Co(II) catalyst, 1, is easy to synthesize, economically viable, thermally stable, and insensitive to air or moisture. The catalyst has been well characterized by EPR, IR, CV and UV-vis spectroscopy and EDX studies.

7.
Org Biomol Chem ; 20(17): 3540-3549, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393991

RESUMO

We report for the first time that the quinoline-based NNN-pincer Cu(II) complex acts as an air stable superior catalyst for the oxidative cross-coupling of the allyl sp3 C-H bond with an acid for the synthesis of allyl esters in a homogeneous system at ambient temperature. The synthesized catalyst, 1, has been well characterized by various analytical techniques (HRMS, single crystal X-ray diffraction, CV, EPR, UV-vis spectroscopy) and showed excellent catalytic activity for the oxidative esterification of allylic C(sp3)-H bonds at 40 °C within a very short period of time (1 h) using only 1 mol% of the catalyst. A wide variety of aromatic allylic esters were synthesized in moderate to good yields, which could be extended to aliphatic allyl esters as well.


Assuntos
Ésteres , Quinolinas , Catálise , Esterificação , Estresse Oxidativo
8.
Inorg Chem ; 60(8): 6086-6098, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33829773

RESUMO

The C2-symmetric photochromic molecule 3, containing dithienylethene (DTE) and ferrocene units connected by an alkyne bridge, represents a unique probe where a metal (Hg2+) binds with the central DTE moiety. Both photoisomerized states of 3 (open, 3o; closed, 3c) are found to interact with Hg2+ ion by the S atoms of the DTE core; however, the binding constants (from a UV-vis study) and DFT calculations suggest that the open isomer (3o) binds with the metal ion more strongly than that of the closed isomer (3c). Notably, the course of metal binding does not perturb the inherent photoisomerization properties of the DTE core and the photoswitchability persists even in the metal-coordinated form of 3, however, with a comparatively slower rate. The quantum yields for photocyclization (Φo→c) and photocycloreversion (Φc→o) in the free form are 0.56 and 0.007, respectively, whereas the photocyclization quantum yield in the Hg2+ complexed species is 0.068, 8.2 times lower than the photocyclization quantum yield (Φo→c) of free 3o. Thus, the rate of photoisomerization can be modulated by a suitable metal coordination to the DTE core. The dynamics of photoswitchability in the metal-coordinated form of DTE has been explored by experimental means (UV-vis and electrochemical studies) as well as quantum chemical calculations.

9.
Inorg Chem ; 59(14): 10099-10112, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32609511

RESUMO

A C2-symmetric internally conjugated 1,3-dialkyne system 5, containing phenolphthalein as a fluorophore and ferrocene as a redox moiety, has been synthesized via a microwave-assisted synthetic procedure. Compound 5 was synthesized by Cu-catalyzed Glaser-Hay coupling using a microwave reactor in neat condition for the first time. Compound 5 was found to be highly selective toward Fe3+, Cu2+, and Hg2+ ions via multichannels. Interestingly, Fe3+ and Cu2+ ions simply promote the oxidation of ferrocene unit to ferrocenium ion without binding to the receptor, whereas Hg2+ binds with the receptor 5 (ΔE1/2 = 71 mV). The oxidation and binding phenomena were investigated by optical and electrochemical analyses. Furthermore, the binding site of Hg2+ ion with our designed probe was confirmed by 1H, 13C NMR and IR titrations, which indicated that conjugated dialkyne unit interacts with Hg2+ ion by a favorable soft-soft interaction. Both receptor 5 and its metal complex, [5·2Hg2+], are stable in the physiological pH range (pH = 6-7) and thermally stable up to 78 °C. The experimental results of metal binding have been further supported by quantum chemical calculations (DFT), which explore the favorable geometry of the free ligand as well as its Hg2+ complex.

10.
Pol J Microbiol ; 58(2): 149-54, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19824399

RESUMO

The study aimed at screening and identifying a potential poly-beta-hydroxybutyrate (PHB) accumulating Bacillus strain and optimization of media parameters for increased PHB production by the strain. A Gram-positive bacterium that accumulated PHB was isolated from local garden soil of Bangalore. Based on morphological and physiological properties, and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus thuringiensis IAM 12077. PHB production was found to be comparable to most of the Bacillus sp. reported to date. PHB production by this strain was dependent on nutrient limitation. Cell dry weight and PHB accumulation increased significantly under biphasic growth condition (from nutrient broth to nitrogen-deficient medium) as compared with growth in nutrient broth alone (from 0.32 g/l to 2.76 g/l cell dry weight; 24% to 43.37% PHB accumulation; 0.2 g/l to 1.2 g/l PHB production), with maximum accumulation at 24 h in nitrogen-deficient medium. Time course study of growth and PHB production by this strain in the nitrogen deficient medium showed that PHB production was associated with the stationary phase of growth. All the tested media containing different carbon and nitrogen sources supported growth and PHB production. Ultraviolet spectrum of the extracted polymer showed a characteristic peak at 235 nm.


Assuntos
Bacillus thuringiensis/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Bacillus thuringiensis/classificação , Bacillus thuringiensis/efeitos dos fármacos , Técnicas Bacteriológicas , Reatores Biológicos , Carbono/química , Carbono/farmacologia , Meios de Cultura/química , Fermentação , Nitrogênio/química , Nitrogênio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...