Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(8): 2799-2809, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29417119

RESUMO

The mono- and dinuclear oxidovanadium(v) complexes [VVO(L1)(Cl)] (1) and [L1VVO(µ2-O)VO(L1)] (2) of ONNO donor amine-bis(phenolate) ligand (H2L1) were readily synthesized by the reaction between H2L1 and VCl3.(THF)3 or VO(acac)2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L1ClVV[double bond, length as m-dash]OH]+ ↔ [L1ClVV-OH]+ (in the case of [L1ClVV[double bond, length as m-dash]OH]+ oxo-O is just protonated, whereas in [L1ClVV-OH]+ it is a hydroxo species), with the shift in λmax from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H2O2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H2O : MeOH : THF = 4 : 3 : 2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H+]. The evaluated kBr and kH values were 5.78 ± 0.20 and 11.01 ± 0.50 M-1 s-1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M-1 s-1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pKa = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.

2.
Inorg Chem ; 56(8): 4324-4331, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345897

RESUMO

A smart molecule, QT490, containing thiosemicarbazide moiety acts as a highly selective turn-on in vitro NO sensor through the unprecedented NO-induced transformation of thiosemicarbazide moiety to 1,3,4-oxadiazole heterocycle with the concomitant release of HSNO, thereby eliminating any interference from various endogenous biomolecules including dehydroascorbic acid, ascorbic acid, etc. The kinetic studies of the reactions between QT490 and NO provide a mechanistic insight into formation of HSNO/RSNO from the reaction between H2S/RSH and NO in the biological system. This novel probe is non-cytotoxic, cell permeable, water-soluble, and appropriate for intracellular cytoplasmic NO sensing with the possibilities of in vivo applications.


Assuntos
Óxido Nítrico/química , S-Nitrosotióis/síntese química , Semicarbazidas/química , Células HeLa , Humanos , Estrutura Molecular , S-Nitrosotióis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...