Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5975, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013854

RESUMO

Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we show the electric excitation and control of multiferroic magnon modes in a spin-source/multiferroic/ferromagnet structure. We demonstrate that the ferroelectric polarization can electrically modulate the magnon-mediated spin-orbit torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. In this multiferroic magnon torque device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. By manipulating the two coupled non-volatile state variables-ferroelectric polarization and magnetization-we further present reconfigurable logic operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing.

2.
Sci Adv ; 10(21): eadk4288, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787951

RESUMO

KTaO3 heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO3 thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO3 and KTaO3 thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO3-based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal-based oxides that lie beyond the capabilities of conventional methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...