Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861498

RESUMO

The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.


Assuntos
Chlamydia trachomatis , Chlamydia trachomatis/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Humanos , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Estrutura Secundária de Proteína
2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895407

RESUMO

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted pathogen worldwide. Since chlamydial infection is largely asymptomatic with the potential for serious complications, a preventative vaccine is likely the most viable long-term answer to this public health threat. Cell-free protein synthesis (CFPS) utilizes the cellular protein manufacturing machinery decoupled from the requirement for maintaining cellular viability, offering the potential for flexible, rapid, and de-centralized production of recombinant protein vaccine antigens. Here, we use CFPS to produce the putative chlamydial type three secretion system (T3SS) needle-tip protein, CT584, for use as a vaccine antigen in mouse models. High-speed atomic force microscopy (HS-AFM) imaging and computer simulations confirm that CFPS-produced CT584 retains a native-like structure prior to immunization. Female mice were primed with CT584 adjuvanted with CpG-1826 intranasally (i.n.) or CpG-1826 + Montanide ISA 720 intramuscularly (i.m.), followed four-weeks later by an i.m. boost before respiratory challenge with 104 inclusion forming units (IFU) of Chlamydia muridarum. Immunization with CT584 generated robust antibody responses but weak cell mediated immunity and failed to protect against i.n. challenge as demonstrated by body weight loss, increased lungs' weights and the presence of high numbers of IFUs in the lungs. While CT584 alone may not be the ideal vaccine candidate, the speed and flexibility with which CFPS can be used to produce other potential chlamydial antigens makes it an attractive technique for antigen production.

3.
NPJ Vaccines ; 9(1): 104, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858418

RESUMO

It is recommended that the adjuvant Montanide ISA 720 VG be used at a concentration of 70% v/v. At this concentration, Montanide causes at the site of immunization a local granuloma that can last for several weeks. To determine the safety and protective efficacy of a Chlamydia muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide (70%, 50%, 30% and 10%), BALB/c (H-2d) female mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% or 50% Montanide but not for those inoculated with 30% or 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with 104 C. muridarum inclusion forming units (IFU). Based on changes in body weight, lungs's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation could significantly facilitate licensing of this adjuvant for human use.

4.
Pathogens ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513710

RESUMO

There is an urgent need to produce a vaccine for Chlamydia trachomatis infections. Here, using the Chlamydia muridarum major outer membrane protein (MOMP) as an antigen, four adjuvant combinations IVAX-1 (MPLA+CpG-1018+AddaVax), IVAX-2 (MPLA+CpG-1018+AS03), CpG-1826+Montanide ISA 720 VG (CpG-1826+Mont) and CpG-1018+Montanide ISA 720 VG (CpG-1018+Mont), were tested for their local reactogenicity and ability to elicit protection in BALB/c mice against a respiratory challenge with C. muridarum. Immunization with IVAX-1 or IVAX-2 induced no significant local reactogenicity following intramuscular immunization. In contrast, vaccines containing Montanide resulted in the formation of a local granuloma. Based on the IgG2a/IgG1 ratio in serum, the four adjuvant combinations elicited Th1-biased responses. IVAX-1 induced the highest in vitro neutralization titers while CpG-1018+Mont stimulated the lowest. As determined by the levels of IFN-γ produced by T-cells, the most robust cellular immune responses were elicited in mice immunized with CpG-1018+Mont, while the weakest responses were mounted by mice receiving IVAX-1. Following the respiratory challenge, mice immunized with CpG-1018+Mont lost the least amount of body weight and had the lowest number of C. muridarum inclusion-forming units (IFUs) in the lungs, while those receiving IVAX-2 had lost the most weight and had the highest number of IFUs in their lungs. Animals vaccinated with CpG-1826+Mont had the lightest lungs while those immunized using IVAX-2 had the heaviest. To conclude, due to their safety and adjuvanticity, IVAX formulations should be considered for inclusion in human vaccines against Chlamydia.

5.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992088

RESUMO

Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen. The number of chlamydial infections continuous to increase and there is an urgent need for a safe and efficacious vaccine. To assess the ability of the Chlamydia muridarum polymorphic membrane protein G (PmpG) and the plasmid glycoprotein 3 (Pgp3) as single antigens, and in combination with the major outer-membrane protein (MOMP) to induce protection, BALB/c mice were immunized utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Following vaccination with MOMP, significant humoral and cell-mediated immune responses were observed, while immunization with PmpG, or Pgp3, elicited weaker immune responses. Weaker immune responses were induced with MOMP+Pgp3 compared with MOMP alone. Following the intranasal challenge with C. muridarum, mice vaccinated with MOMP showed robust protection against body-weight loss, inflammatory responses in the lungs and number of Chlamydia recovered from the lungs. PmpG and Pgp3 elicited weaker protective responses. Mice immunized with MOMP+PmpG, were no better protected than animals vaccinated with MOMP only, while Pgp3 antagonized the protection elicited by MOMP. In conclusion, PmpG and Pgp3 elicited limited protective immune responses in mice against a respiratory challenge with C. muridarum and failed to enhance the protection induced by MOMP alone. The virulence of Pgp3 may result from its antagonistic effect on the immune protection induced by MOMP.

6.
Nat Commun ; 14(1): 464, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709333

RESUMO

Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. However, antigen display on OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. Here, we describe a universal approach for avidin-based vaccine antigen crosslinking (AvidVax) whereby biotinylated antigens are linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen-binding protein (SNAP) comprised of an outer membrane scaffold protein fused to a biotin-binding protein. We show that SNAP-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations are injected in mice, strong antigen-specific antibody responses are observed that depend on the physical coupling between the antigen and SNAP-OMV delivery vehicle. Overall, these results demonstrate AvidVax as a modular platform that enables rapid and simplified assembly of antigen-studded OMVs for application as vaccines against pathogenic threats.


Assuntos
Membrana Externa Bacteriana , Vacinas , Animais , Camundongos , Antígenos , Proteínas de Membrana , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Antígenos de Bactérias , Vacinas Bacterianas
7.
Res Sq ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168233

RESUMO

To determine the safety and protective efficacy of a C. muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide ISA 720 VG (70%, 50%, 30% and 10%), BALB/c mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% and 50% Montanide but not in mice receiving 30% and 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with C. muridarum and, at day 10 post-challenge, mice were euthanized. Based on changes in body weight, lung's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation will significantly facilitate licensing for human use.

8.
Microbiol Spectr ; 10(4): e0161722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876584

RESUMO

The tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor (TRAIL-R) suppresses inflammation and could therefore affect the course of Chlamydia infections and their long-term sequelae. Wild-type (WT) and TRAIL-R-/- C57BL/6 mice were inoculated vaginally with Chlamydia muridarum; the course of the infection was followed with vaginal cultures and the presence of hydrosalpinx determined. To evaluate the role of TRAIL-R following a secondary infection, the mice were vaginally reinfected. WT and TRAIL-R-/- male mice were also infected and reinfected in the respiratory tract, and the course of the diseases and the infections were followed. Following the primary and secondary vaginal infection, no significant differences in vaginal shedding or hydrosalpinx formation were observed between the WT and TRAIL-R-/- mice. The WT and TRAIL-R-/- mice mounted antibody responses in serum and vaginal washes that were not significantly different. After the primary and secondary intranasal infections of the male mice, changes in body weight were determined, and no significant differences were observed between the WT and TRAIL-R-/- mice. Ten days after the primary and the secondary infections, the weight of the lungs and number of C. muridarum inclusion forming units (IFU) were determined. The lungs of the WT mice weighed less compared with the TRAIL-R-/- mice following a primary infection but not after a secondary infection. No differences in the number of C. muridarum IFU in the lungs were observed between the two groups of mice. In conclusion, despite playing a role in inflammation cell-signaling pathways in vitro, TRAIL-R does not appear to play a major role in the susceptibility, clinical outcomes, or long-term sequelae of C. muridarum infections in vivo. IMPORTANCE TNF-related apoptosis-inducing ligand receptor (TRAIL-R) is involved in suppressing inflammatory responses. Bacterial pathogens such as Chlamydia spp. elicit inflammatory responses in humans following genital, ocular, and respiratory infections. The inflammatory responses are important to control the spread of Chlamydia. However, in certain instances, these inflammatory responses can produce long-term sequelae, including fibrosis. Fibrosis, or scarring, in the genital tract, eye, and respiratory system results in functional deficiencies, including infertility, blindness, and chronic obstructive lung disease, respectively. The goal of this study was to determine if mice deficient in TRAIL-R infected in the genital and respiratory tracts with Chlamydia spp. suffer more or less severe infections, infertility, or lung diseases than wild-type mice. Our results show no differences between the immune responses, infection severity, and long-term sequelae between TRAIL-R knockout and wild-type animals following a genital or a respiratory infection with Chlamydia.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Coinfecção , Infertilidade , Infecções do Sistema Genital , Infecções Respiratórias , Animais , Chlamydia muridarum/fisiologia , Feminino , Fibrose , Humanos , Infertilidade/patologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções do Sistema Genital/patologia , Vagina/microbiologia
9.
J Vis Exp ; (181)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35377358

RESUMO

Subunit vaccines offer advantages over more traditional inactivated or attenuated whole-cell-derived vaccines in safety, stability, and standard manufacturing. To achieve an effective protein-based subunit vaccine, the protein antigen often needs to adopt a native-like conformation. This is particularly important for pathogen-surface antigens that are membrane-bound proteins. Cell-free methods have been successfully used to produce correctly folded functional membrane protein through the co-translation of nanolipoprotein particles (NLPs), commonly known as nanodiscs. This strategy can be used to produce subunit vaccines consisting of membrane proteins in a lipid-bound environment. However, cell-free protein production is often limited to small scale (<1 mL). The amount of protein produced in small-scale production runs is usually sufficient for biochemical and biophysical studies. However, the cell-free process needs to be scaled up, optimized, and carefully tested to obtain enough protein for vaccine studies in animal models. Other processes involved in vaccine production, such as purification, adjuvant addition, and lyophilization, need to be optimized in parallel. This paper reports the development of a scaled-up protocol to express, purify, and formulate a membrane-bound protein subunit vaccine. Scaled-up cell-free reactions require optimization of plasmid concentrations and ratios when using multiple plasmid expression vectors, lipid selection, and adjuvant addition for high-level production of formulated nanolipoprotein particles. The method is demonstrated here with the expression of a chlamydial major outer membrane protein (MOMP) but may be widely applied to other membrane protein antigens. Antigen effectiveness can be evaluated in vivo through immunization studies to measure antibody production, as demonstrated here.


Assuntos
Chlamydia muridarum , Adjuvantes Imunológicos , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Chlamydia muridarum/química , Proteínas Recombinantes/genética , Desenvolvimento de Vacinas
10.
Front Pharmacol ; 12: 768461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899322

RESUMO

A worldwide estimate of over one million STIs are acquired daily and there is a desperate need for effective preventive as well as therapeutic measures to curtail this global health burden. Vaccines have been the most effective means for the control and potential eradication of infectious diseases; however, the development of vaccines against STIs has been a daunting task requiring extensive research for the development of safe and efficacious formulations. Nanoparticle-based vaccines represent a promising platform as they offer benefits such as targeted antigen presentation and delivery, co-localized antigen-adjuvant combinations for enhanced immunogenicity, and can be designed to be biologically inert. Here we discuss promising types of nanoparticles along with outcomes from nanoparticle-based vaccine preclinical studies against non-viral STIs including chlamydia, syphilis, gonorrhea, and recommendations for future nanoparticle-based vaccines against STIs.

11.
Vaccines (Basel) ; 9(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358171

RESUMO

Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10-25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.

12.
PLoS One ; 16(4): e0250317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886668

RESUMO

To identify immunodominant antigens that elicit a humoral immune response following a primary and a secondary genital infection, rhesus monkeys were inoculated cervically with Chlamydia trachomatis serovar D. Serum samples were collected and probed with a protein microarray expressing 864/894 (96.4%) of the open reading frames of the C. trachomatis serovar D genome. The antibody response to the primary infection was analyzed in 72 serum samples from 12 inoculated monkeys. The following criteria were utilized to identify immunodominant antigens: proteins found to be recognized by at least 75% (9/12) of the infected monkeys with at least 15% elevations in signal intensity from week 0 to week 8 post infection. All infected monkeys developed Chlamydia specific serum antibodies. Eight proteins satisfied the selection criteria for immunodominant antigens: CT242 (OmpH-like protein), CT541 (mip), CT681 (ompA), CT381 (artJ), CT443 (omcB), CT119 (incA), CT486 (fliY), and CT110 (groEL). Of these, three antigens, CT119, CT486 and CT381, were not previously identified as immunodominant antigens using non-human primate sera. Following the secondary infection, the antibody responses to the eight immunodominant antigens were analyzed and found to be quite different in intensity and duration to the primary infection. In conclusion, these eight immunodominant antigens can now be tested for their ability to identify individuals with a primary C. trachomatis genital infection and to design vaccine strategies to protect against a primary infection with this pathogen.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/genética , Epitopos Imunodominantes/imunologia , Doenças dos Macacos/imunologia , Doenças Vaginais/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/sangue , Linfócitos B/imunologia , Proteínas de Bactérias/sangue , Infecções por Chlamydia/sangue , Infecções por Chlamydia/microbiologia , Feminino , Genoma Bacteriano , Epitopos Imunodominantes/sangue , Macaca mulatta , Doenças dos Macacos/sangue , Doenças dos Macacos/microbiologia , Fases de Leitura Aberta , Vagina/imunologia , Vagina/microbiologia , Doenças Vaginais/sangue , Doenças Vaginais/microbiologia
13.
Expert Rev Vaccines ; 20(4): 421-435, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682583

RESUMO

INTRODUCTION: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED: We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION: The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia/prevenção & controle , Chlamydia trachomatis/imunologia , Genitália
14.
NPJ Vaccines ; 5: 87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014435

RESUMO

The goal of this study was to determine if exosomes, isolated from Chlamydia muridarum infected HeLa cells (C. muridarum-exosomes), induce protective immune responses in mice following vaccination using CpG plus Montanide as adjuvants. Exosomes, collected from uninfected HeLa cells and PBS, formulated with the same adjuvants, were used as negative controls. Mass spectrometry analyses identified 113 C. muridarum proteins in the C. muridarum-exosome preparation including the major outer membrane protein and the polymorphic membrane proteins. Vaccination with C. muridarum-exosomes elicited robust humoral and cell-mediated immune responses to C. muridarum elementary bodies. Following vaccination, mice were challenged intranasally with C. muridarum. Compared to the negative controls, mice immunized with C. muridarum-exosomes were significantly protected as measured by changes in body weight, lungs' weight, and number of inclusion forming units recovered from lungs. This is the first report, of a vaccine formulated with Chlamydia exosomes, shown to elicit protection against a challenge.

15.
NPJ Vaccines ; 5: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083025

RESUMO

Implementation of a vaccine is likely the best approach to curtail Chlamydia trachomatis infections. The aim of this study was to determine the ability of a vaccine formulated with the recombinant major outer membrane protein (MOMP) and Th1 and Th2 adjuvants, delivered by combinations of systemic and mucosal routes, to elicit long-term protection in mice against a genital challenge with Chlamydia muridarum. As a negative control, mice were vaccinated with the recombinant Neisseria gonorrhoeae porinB, and the positive control group was immunized with C. muridarum live elementary bodies (EB). The four vaccines formulated with MOMP, as determined by the titers of IgG and neutralizing antibodies in serum, proliferative responses of T-cells stimulated with EB and levels of IFN-γ in the supernatants, elicited robust humoral and cellular immune responses over a 6-month period. Groups of mice were challenged genitally at 60, 120, or 180 days postimmunization. Based on the number of mice with positive vaginal cultures, number of positive cultures, length of time of shedding, and number of inclusion forming units recovered, MOMP vaccinated groups were significantly protected. To assess fertility, when the vaginal cultures became negative, female mice were caged with male mice and the outcome of the pregnancy evaluated. As determined by the number of pregnant mice and the number of embryos, two of the vaccine formulations protected mice up to 180 days postimmunization. To our knowledge this is the first subunit of Chlamydia vaccine that has elicited in mice significant long-term protection against a genital challenge.

16.
Vaccine ; 38(28): 4412-4422, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32386746

RESUMO

A new vaccine formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) and amphipols was assessed in an intranasal (i.n.) challenge mouse model. nMOMP was trapped either in amphipol A8-35 (nMOMP/A8-35) or in A8-35 conjugated with Resiquimod (nMOMP/Resiq-A8-35), a TLR7/8 agonist added as adjuvant. The effects of free Resiquimod and/or additional adjuvants, Montanide ISA 720 (TLR independent) and CpG-1826 (TLR9 agonist), were also evaluated. Immunization with nMOMP/A8-35 alone administered i.n. was used as negative adjuvant-control group, whereas immunizations with C. muridarum elementary bodies (EBs) and MEM buffer, administered i.n., were used as positive and negative controls, respectively. Vaccinated mice were challenged i.n. with C. muridarum and changes in body weight, lungs weight and recovery of Chlamydia from the lungs were evaluated. All the experimental groups showed protection when compared with the negative control group. Resiquimod alone produced weak humoral and cellular immune responses, but both Montanide and CpG-1826 showed significant increases in both responses. The addition of CpG-1826 alone switched immune responses to be Th1-biased. The most robust protection was elicited in mice immunized with the three adjuvants and conjugated Resiquimod. Increased protection induced by the Resiquimod covalently linked to A8-35, in the presence of Montanide and CpG-1826 was established based on a set of parameters: (1) the ability of the antibodies to neutralize C. muridarum; (2) the increased proliferation of T-cells in vitro accompanied by higher production of IFN-γ, IL-6 and IL-17; (3) the decreased body weight loss over the 10 days after challenge; and (4) the number of IFUs recovered from the lungs at day 10 post challenge. In conclusion, a vaccine formulated with the C. muridarum nMOMP bound to amphipols conjugated with Resiquimod enhances protective immune responses that can be further improved by the addition of Montanide and CpG-1826.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Infecções por Chlamydia/prevenção & controle , Imidazóis , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos
17.
NPJ Vaccines ; 5(1): 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411400

RESUMO

Chlamydia trachomatis is the most frequently detected sexually transmitted bacterial pathogen in the world. Attempts to control these infections with screening programs and antibiotics have failed and, therefore, a vaccine is the best approach to control this epidemic. The Chlamydia major outer membrane protein (MOMP) is the most protective subunit vaccine so far tested. Protection induced by MOMP is, in part, dependent on its tertiary structure. We have previously described new recombinant antigens composed of the Neisseria lactamica PorB engineered to express the variable domains (VD) from Chlamydia muridarum MOMP. Here we tested antigens containing each individual MOMP VD and different VD combinations. Following immunization, mice were challenged intranasally with C. muridarum. Our results show that three constructs, PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4, elicited high serum IgG titers in vivo, significant IFN-γ levels upon T cells re-stimulation in vitro, and evidence of protective immunity in vivo. PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4 immunized mice lost less body weight, had lighter lungs, and decreased numbers of inclusion forming units (IFUs) in lungs than other PorB/VD construct tested and mock PBS-immunized mice. These results suggest that this approach may be a promising alternative to the use of MOMP in a Chlamydia vaccine.

18.
PLoS One ; 15(3): e0230718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210474

RESUMO

Chlamydia trachomatis is the most common bacterial sexually-transmitted infection and the major cause of preventable blindness worldwide. The asymptomatic nature of many infections along with uncontrolled inflammation leads to irreversible damage in the upper genital tract and the tarsal conjunctivae, with the major complications of infertility and chronic pelvic pain, and blindness, respectively. Inflammation must, therefore, be tightly regulated to avoid an unrestrained immune response. The genetic factors that regulate inflammation through Toll-like receptor (TLR) signaling pathways during C. trachomatis infection have not been fully characterized. SIGIRR (also known as IL-1R8 or TIR8) can regulate inflammation in response to various pathogens and diseases. However, nothing is known about its role during C. trachomatis infection. Expression of the pro-inflammatory chemokine, IL-8, was measured in epithelial cells infected with C. trachomatis. The effect of SIGIRR was determined by depleting SIGIRR or over-expressing SIGIRR in the epithelial cells before infection. Our results indicate that, in the absence of SIGIRR, epithelial cells induce higher levels of the pro-inflammatory chemokine, IL-8, in response to C. trachomatis infection. In addition, SIGIRR associates with MyD88 in both infected and uninfected infected cells. Collectively, our data demonstrate that SIGIRR functions as a negative regulator of the immune response to C. trachomatis infection. This finding provides insights into the immuno-pathogenesis of C. trachomatis that can be used to treat and identify individuals at risk of uncontrolled inflammation during infection.


Assuntos
Chlamydia trachomatis/fisiologia , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Chlamydia trachomatis/imunologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Regulação da Expressão Gênica/imunologia , Inativação Gênica , Células HeLa , Humanos , Interleucina-8/genética , Fator 88 de Diferenciação Mieloide/metabolismo , RNA Mensageiro/genética , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética
19.
Hum Vaccin Immunother ; 16(10): 2537-2547, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32118511

RESUMO

Chlamydia trachomatis is the most common bacterial sexually-transmitted pathogen for which there is no vaccine. We previously demonstrated that the degree of phosphate substitution in an aluminum hydroxide adjuvant in a TLR-4-based C. trachomatis serovar E (Ser E) recombinant major outer membrane protein (rMOMP) formulation had an impact on the induced antibody titers and IFN-γ levels. Here, we have extended these observations using outbreed CD-1 mice immunized with C. trachomatis Ser E rMOMP formulations to evaluate the impact on bacterial challenge. The results confirmed that the rMOMP vaccine containing the adjuvant with the highest phosphate substitution induced the highest neutralizing antibody titers while the formulation with the lowest phosphate substitution induced the highest IFN-γ production. The most robust protection was observed in mice vaccinated with the formulation containing the adjuvant with the lowest phosphate substitution, as shown by the number of mice with positive vaginal cultures, number of positive cultures and number of C. trachomatis inclusion forming units recovered. This is the first report showing that vaccination of an outbred strain of mice with rMOMP induces protection against a vaginal challenge with C. trachomatis.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Animais , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas , Infecções por Chlamydia/prevenção & controle , Feminino , Camundongos , Fosfatos , Sorogrupo
20.
J Infect Dis ; 221(2): 191-200, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31504647

RESUMO

BACKGROUND: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Here, we determined the ability of a C. trachomatis recombinant major outer membrane protein (rMOMP) vaccine to elicit cross-serogroup protection. METHODS: Female C3H/HeN mice were vaccinated by mucosal and systemic routes with C. trachomatis serovar D (UW-3/Cx) rMOMP and challenged in the ovarian bursa with serovars D (UW-3/Cx), D (UCI-96/Cx), E (IOL-43), or F (N.I.1). CpG-1826 and Montanide ISA 720 were used as adjuvants. RESULTS: Immune responses following vaccination were more robust against the most closely related serovars. Following a genital challenge (as determined by number of mice with positive vaginal cultures, number of positive cultures, number of inclusion forming units recovered, and number of days with positive cultures) mice challenged with C. trachomatis serovars of the same complex were protected but not those challenged with serovar F (N.I.1) from a different subcomplex. Females were caged with male mice. Based on fertility rates, number of embryos, and hydrosalpinx formation, vaccinated mice were protected against challenges with serovars D (UW-3/Cx), D (UCI-96/Cx), and E (IOL-43) but not F (N.I.1). CONCLUSIONS: This is the first subunit vaccine shown to protect mice against infection, pathology, and infertility caused by different C. trachomatis serovars.


Assuntos
Infecções por Chlamydia/prevenção & controle , Proteção Cruzada/imunologia , Infertilidade Feminina/prevenção & controle , Porinas/imunologia , Vacinas Sintéticas/imunologia , Vagina/microbiologia , Animais , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/isolamento & purificação , Feminino , Imunoglobulina G , Infertilidade Feminina/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Gravidez , Sorogrupo , Vagina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...