Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616752

RESUMO

Roof falls are currently one of the most dangerous threats associated with underground mining at great depth. Every occurrence of such an event poses a significant risk to the mining crew and disturbs the continuity of the mining process, which clearly affects the economy of the exploitation process. The development of a reliable monitoring system may significantly reduce the impact of eventual roof failure and will have a positive effect on the sustainability of the extraction process. Within this research study, a prototype of an instrumented rock bolt developed for continuous stress measurement is presented. The procedure of a 4-groove multilevel instrumented rock bolt is described and the calibration process is shown. Then, preliminary results of long-term in situ monitoring are presented. Based on the continuous monitoring of stress distribution within immediate roof strata, it was concluded that the developed instrumented rock bolt provides reliable results and is a very useful device, ensuring the possibility of early warning for miners about increasing roof fall risk.


Assuntos
Minas de Carvão
2.
Sensors (Basel) ; 21(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065469

RESUMO

The classical Rayleigh surface rotational wave in terms of its theoretical notation and, resulting from this, properties associated with the induced seismic phenomena in mines are presented. This kind of seismic wave was analysed in-depth from the point of view of the parameters governing the form of its mathematical notation based on the similarity to the records obtained during the induced seismicity in near-field 6-DoF monitoring. Furthermore, conducted field measurements made it possible to relate the amount of the emitted seismic energy to the expected highest amplitude of rotational vibrations in the entire field of their impact on the rock mass. As a result, this made it possible to impose the completely defined R wave to the numerical models of given objects; the safety level, when subjected to the dynamic load induced by the rotational wave, would be an objective of the performed analyses. The conducted preliminary analyses were prepared for a plane strain state, for which the values of seismic rotations were evaluated concerning the energy and the distance of the seismic event's source. As a result of the performed simulations, it was found that the results of the calculations matched with a satisfying degree with the field seismic measurements of the rotational ground motion induced by propagating the seismic wave. Such a verified analytical description of the theoretical formulas can be the basis for the implementation of R-wave characteristics into seismic codes and numerical analyses of object stability in the Lower Silesian Copper Basin region.

3.
Sensors (Basel) ; 20(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260739

RESUMO

The impact of seismicity on structures is one of the key problems of civil engineering. According to recent knowledge, the reliable analysis should be based on both rotational and translational components of the seismic wave. To determine the six degrees of freedom (6-DoF) characteristic of mining-induced seismicity, two sets of seismic posts were installed in the Lower Silesian Copper Basin, Poland. Long-term continuous 6-DoF measurements were conducted with the use of the R-1 rotational seismometer and EP-300 translational seismometer. In result data collection, the waveforms generated by 39 high-energy seismic events were recorded. The characteristic of the rotational component of the seismic waves were described in terms of their amplitude and frequency characteristics and were compared with translational measurements. The analysis indicated that the characteristic of the rotational component of the seismic wave differs significantly in comparison to translational ones, both in terms of their amplitude and frequency distribution. Also, attenuation of rotational and translational components was qualitatively compared. Finally, the empirical formulas for seismic rotation prediction in the Lower Silesian Copper Basin were developed and validated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...