Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 614243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421831

RESUMO

The brucellae are facultative intracellular bacteria with a cell envelope rich in phosphatidylcholine (PC). PC is abundant in eukaryotes but rare in prokaryotes, and it has been proposed that Brucella uses PC to mimic eukaryotic-like features and avoid innate immune responses in the host. Two PC synthesis pathways are known in prokaryotes: the PmtA-catalyzed trimethylation of phosphatidylethanolamine and the direct linkage of choline to CDP-diacylglycerol catalyzed by the PC synthase Pcs. Previous studies have reported that B. abortus and B. melitensis possess non-functional PmtAs and that PC is synthesized exclusively via Pcs in these strains. A putative choline transporter ChoXWV has also been linked to PC synthesis in B. abortus. Here, we report that Pcs and Pmt pathways are active in B. suis biovar 2 and that a bioinformatics analysis of Brucella genomes suggests that PmtA is only inactivated in B. abortus and B. melitensis strains. We also show that ChoXWV is active in B. suis biovar 2 and conserved in all brucellae except B. canis and B. inopinata. Unexpectedly, the experimentally verified ChoXWV dysfunction in B. canis did not abrogate PC synthesis in a PmtA-deficient mutant, which suggests the presence of an unknown mechanism for obtaining choline for the Pcs pathway in Brucella. We also found that ChoXWV dysfunction did not cause attenuation in B. suis biovar 2. The results of these studies are discussed with respect to the proposed role of PC in Brucella virulence and how differential use of the Pmt and Pcs pathways may influence the interactions of these bacteria with their mammalian hosts.

2.
Front Microbiol ; 8: 2657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375522

RESUMO

The brucellae are facultative intracellular bacteria that cause a worldwide extended zoonosis. One of the pathogenicity mechanisms of these bacteria is their ability to avoid rapid recognition by innate immunity because of a reduction of the pathogen-associated molecular pattern (PAMP) of the lipopolysaccharide (LPS), free-lipids, and other envelope molecules. We investigated the Brucella homologs of lptA, lpxE, and lpxO, three genes that in some pathogens encode enzymes that mask the LPS PAMP by upsetting the core-lipid A charge/hydrophobic balance. Brucella lptA, which encodes a putative ethanolamine transferase, carries a frame-shift in B. abortus but not in other Brucella spp. and phylogenetic neighbors like the opportunistic pathogen Ochrobactrum anthropi. Consistent with the genomic evidence, a B. melitensis lptA mutant lacked lipid A-linked ethanolamine and displayed increased sensitivity to polymyxin B (a surrogate of innate immunity bactericidal peptides), while B. abortus carrying B. melitensis lptA displayed increased resistance. Brucella lpxE encodes a putative phosphatase acting on lipid A or on a free-lipid that is highly conserved in all brucellae and O. anthropi. Although we found no evidence of lipid A dephosphorylation, a B. abortus lpxE mutant showed increased polymyxin B sensitivity, suggesting the existence of a hitherto unidentified free-lipid involved in bactericidal peptide resistance. Gene lpxO putatively encoding an acyl hydroxylase carries a frame-shift in all brucellae except B. microti and is intact in O. anthropi. Free-lipid analysis revealed that lpxO corresponded to olsC, the gene coding for the ornithine lipid (OL) acyl hydroxylase active in O. anthropi and B. microti, while B. abortus carrying the olsC of O. anthropi and B. microti synthesized hydroxylated OLs. Interestingly, mutants in lptA, lpxE, or olsC were not attenuated in dendritic cells or mice. This lack of an obvious effect on virulence together with the presence of the intact homolog genes in O. anthropi and B. microti but not in other brucellae suggests that LptA, LpxE, or OL ß-hydroxylase do not significantly alter the PAMP properties of Brucella LPS and free-lipids and are therefore not positively selected during the adaptation to intracellular life.

3.
Innate Immun ; 21(3): 305-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25034969

RESUMO

Endotoxins (LPS) are highly potent immune stimulatory molecules and are mainly known for triggering Gram-negative sepsis. However, besides their toxic effects, this stimulatory function may be advantageous, for example when used as an adjuvant during vaccination. Thus, there is always a narrow range between the useful wake-up of the immune system and its overwhelming reaction, which can lead to diseases like sepsis. This raises the question of which conformational properties are responsible for making the LPS aggregates more or less potent. As described previously, the size, type and form of LPS aggregates play a major role in their immune stimulatory activity. In this study we investigate the role of these parameters. On the one hand, we use a peptide (Pep19-2.5; Aspidasept) that causes a change of the LPS aggregate structure into a less toxic state; on the other hand, we use a potent immune stimulating peptide (Hbγ-35), leading to higher toxicity. We have found opposing effects on LPS aggregate conformations allowing a better understanding of the processes of immune stimulation.


Assuntos
Endotoxinas/imunologia , Hemoglobinas/imunologia , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/imunologia , Fragmentos de Peptídeos/imunologia , Salmonella enterica/imunologia , Células Cultivadas , Endotoxinas/química , Hemoglobinas/química , Humanos , Sistema Imunitário , Imunização , Lipopolissacarídeos/química , Conformação Molecular , Fragmentos de Peptídeos/química
4.
J Bacteriol ; 196(16): 3045-57, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24936050

RESUMO

The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ΔppdK and Δmae mutants was severely impaired and growth of the double Δfbp-ΔglpX mutant was reduced. In macrophages, only the ΔppdK and Δmae mutants showed reduced multiplication, and studies with the ΔppdK mutant confirmed that it reached the replicative niche. Similarly, only the ΔppdK and Δmae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt.


Assuntos
Brucella abortus/enzimologia , Brucella abortus/patogenicidade , Brucelose/microbiologia , Frutose-Bifosfatase/metabolismo , Malato Desidrogenase/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo , Animais , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Brucelose/patologia , Carbono/metabolismo , Modelos Animais de Doenças , Frutose-Bifosfatase/genética , Deleção de Genes , Malato Desidrogenase/genética , Redes e Vias Metabólicas/genética , Camundongos , Piruvato Ortofosfato Diquinase/genética , Virulência
5.
Microb Pathog ; 73: 53-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24927935

RESUMO

Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure.


Assuntos
Brucella abortus/química , Brucella abortus/patogenicidade , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Atividade Bactericida do Sangue , Células Dendríticas/microbiologia , Feminino , Deleção de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Virulência
6.
PLoS Pathog ; 8(5): e1002675, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589715

RESUMO

Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.


Assuntos
Brucella abortus/imunologia , Brucella abortus/patogenicidade , Evasão da Resposta Imune , Imunidade Inata , Lipopolissacarídeos/metabolismo , Animais , Sistemas de Secreção Bacterianos , Brucella abortus/genética , Brucelose/microbiologia , Brucelose/patologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Feminino , Inflamação/imunologia , Lipídeo A/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C
7.
Microbiology (Reading) ; 158(Pt 4): 1037-1044, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22262102

RESUMO

The brucellae are facultative intracellular pathogens of mammals that are transmitted by contact with infected animals or contaminated materials. Several major lipidic components of the brucella cell envelope are imperfectly recognized by innate immunity, thus contributing to virulence. These components carry large proportions of acyl chains of lactobacillic acid, a long chain cyclopropane fatty acid (CFA). CFAs result from addition of a methylene group to unsaturated acyl chains and contribute to resistance to acidity, dryness and high osmolarity in many bacteria and to virulence in mycobacteria. We examined the role of lactobacillic acid in Brucella abortus virulence by creating a mutant in ORF BAB1_0476, the putative CFA synthase gene. The mutant did not incorporate [(14)C]methyl groups into lipids, lacked CFAs and synthesized the unsaturated precursors, proving that BAB1_0476 actually encodes a CFA synthase. BAB1_0476 promoter-luxAB fusion studies showed that CFA synthase expression was promoted by acid pH and high osmolarity. The mutant was not attenuated in macrophages or mice, strongly suggesting that CFAs are not essential for B. abortus intracellular life. However, when the mutant was tested under high osmolarity on agar and acid pH, two conditions likely to occur on contaminated materials and fomites, they showed reduced ability to grow or survive. Since CFA synthesis entails high ATP expenses and brucellae produce large proportions of lactobacillic acyl chains, we speculate that the CFA synthase has been conserved because it is useful for survival extracellularly, thus facilitating persistence in contaminated materials and transmission to new hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Ciclopropanos/metabolismo , Ácidos Graxos/metabolismo , Metiltransferases/metabolismo , Ácidos/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/patogenicidade , Linhagem Celular , Feminino , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Macrófagos/microbiologia , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta , Virulência
8.
PLoS One ; 6(1): e16030, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21249206

RESUMO

The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.


Assuntos
Brucella abortus/imunologia , Membrana Celular/imunologia , Evasão da Resposta Imune , Imunidade Inata , Lipídeos/imunologia , Ornitina/análogos & derivados , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella abortus/patogenicidade , Lipídeos de Membrana/imunologia , Camundongos , Ornitina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...