Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 124(7): 2081-2092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38413390

RESUMO

PURPOSE: Bone growth with exercise is best assessed by tennis-induced inter-arm asymmetries. Yet, the effects of training and maturation across puberty were unclear. This study explored arm bone growth across 9 months of training in 46 tennis players 7-14 years (25 boys, 21 girls). METHODS: Bone mineral content (BMC) and bone area (BA) were measured from DXA scans. Pubertal status was assessed by Tanner stage (TS) and somatic growth by maturity offset (MO). Children were grouped as pre- (TS I-I), early (TS I-II), and mid/late pubertal (TS II-III). RESULTS: Training time (TT) change in the three groups was 160-170, 190-230, and 200-220 h, respectively. Bone asymmetries were large in all groups (d > 0.8, P < 0.001): 5-18 g (9-21%) and 9-17 g (17-23%) in girls and boys, respectively, for BMC, and 5-15 cm2 (6-13%) and 9-15 cm2 (12-15%) in girls and boys (10-13%), respectively, for BA. BMC and BA change asymmetry peaked at pre-puberty in girls (56%, 46%) and at early puberty in boys (57%, 43%). Asymmetry gains varied with baseline asymmetry (41%) and change in TT (38%) and TS (17%) in BMC, and with baseline asymmetry (58%) and change in MO (17%) and TS (12%) in BA. CONCLUSION: All bone asymmetries were substantial. Tennis-induced bone gains were higher at pre- to early puberty in girls and at early to mid/late puberty in boys. Training enhanced mostly bone mass and maturity status enhanced mostly bone size; sex was not bone-change modeling impactful. Implications are discussed considering certain limitations.


Assuntos
Densidade Óssea , Desenvolvimento Ósseo , Puberdade , Tênis , Humanos , Masculino , Tênis/fisiologia , Feminino , Criança , Adolescente , Puberdade/fisiologia , Densidade Óssea/fisiologia , Desenvolvimento Ósseo/fisiologia , Ossos do Braço/crescimento & desenvolvimento , Ossos do Braço/fisiologia , Ossos do Braço/diagnóstico por imagem
2.
J Sports Sci ; 38(20): 2298-2306, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32543283

RESUMO

This study estimated upper and lower limb bone mineral content (BMC) and bone area (BA) in 48 children tennis players (24 boys, 24 girls) aged 7-13 years. The sample comprised four age groups (8.2 ± 0.44, 9.5 ± 0.13, 10.5 ± 0.33, 12.2 ± 0.58). BMC and BA were measured via DXA, and sexual maturity by the Tanner scale, then used as a binary: prepubertal vs peripubertal. Total training time (TTT) included all playing years. Arms were asymmetric and legs symmetric. Boys were more asymmetric than girls in BMC (18% vs 13%) and BA (11% vs 8%). Pre-pubertal children were less asymmetric than peri-pubertal in BMC (14% vs 18%) and in BA (9.4% vs 10%). Bone growth changed with age and TTT markedly better in the dominant arm. The linear combination of TTT, sex, and maturity binary extracted 59% of BMC asymmetry and only 21% of BA asymmetry. For both bone parameters the sex effect was significant only for the pre-pubertal children. Training time constitutes the best predictor of bone asymmetry compared to age, sex, and maturity; when adequate, playing arm bone hypertrophy may be detectable at the age of 7-8 years. These results have health and performance implications.


Assuntos
Densidade Óssea , Desenvolvimento Ósseo/fisiologia , Extremidade Inferior/fisiologia , Condicionamento Físico Humano/fisiologia , Maturidade Sexual/fisiologia , Tênis/fisiologia , Extremidade Superior/fisiologia , Adolescente , Fatores Etários , Criança , Feminino , Humanos , Masculino , Puberdade/fisiologia , Análise de Regressão , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...