Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071471

RESUMO

Characterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.


Assuntos
Hematopoiese Clonal , Neoplasias Hematológicas , Animais , Camundongos , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/patologia , Inflamação/genética , Inflamação/patologia , Neoplasias Hematológicas/genética , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Mutação
2.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976647

RESUMO

Loss-of-function mutations in the DNA methyltransferase 3A (DNMT3A) are seen in a large number of patients with acute myeloid leukemia (AML) with normal cytogenetics and are frequently associated with poor prognosis. DNMT3A mutations are an early preleukemic event, which - when combined with other genetic lesions - result in full-blown leukemia. Here, we show that loss of Dnmt3a in hematopoietic stem and progenitor cells (HSC/Ps) results in myeloproliferation, which is associated with hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway. PI3Kα/ß or the PI3Kα/δ inhibitor treatment partially corrects myeloproliferation, although the partial rescue is more efficient in response to the PI3Kα/ß inhibitor treatment. In vivo RNA-Seq analysis on drug-treated Dnmt3a-/- HSC/Ps showed a reduction in the expression of genes associated with chemokines, inflammation, cell attachment, and extracellular matrix compared with controls. Remarkably, drug-treated leukemic mice showed a reversal in the enhanced fetal liver HSC-like gene signature observed in vehicle-treated Dnmt3a-/- LSK cells as well as a reduction in the expression of genes involved in regulating actin cytoskeleton-based functions, including the RHO/RAC GTPases. In a human PDX model bearing DNMT3A mutant AML, PI3Kα/ß inhibitor treatment prolonged their survival and rescued the leukemic burden. Our results identify a potentially new target for treating DNMT3A mutation-driven myeloid malignancies.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética , DNA Metiltransferase 3A , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células Mieloides/patologia , Homeostase
3.
Mol Ther ; 31(4): 986-1001, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739480

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.


Assuntos
Leucemia Mielomonocítica Juvenil , Animais , Camundongos , Azacitidina/farmacologia , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mutação , Inibidores de Proteínas Quinases , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Humanos
4.
Blood ; 140(11): 1263-1277, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772013

RESUMO

Hematopoietic stem cells (HSCs) manifest impaired recovery and self-renewal with a concomitant increase in differentiation when exposed to ambient air as opposed to physioxia. Mechanism(s) behind this distinction are poorly understood but have the potential to improve stem cell transplantation. Single-cell RNA sequencing of HSCs in physioxia revealed upregulation of HSC self-renewal genes and downregulation of genes involved in inflammatory pathways and HSC differentiation. HSCs under physioxia also exhibited downregulation of the epigenetic modifier Tet2. Tet2 is α-ketoglutarate, iron- and oxygen-dependent dioxygenase that converts 5-methylcytosine to 5-hydroxymethylcytosine, thereby promoting active transcription. We evaluated whether loss of Tet2 affects the number and function of HSCs and hematopoietic progenitor cells (HPCs) under physioxia and ambient air. In contrast to wild-type HSCs (WT HSCs), a complete nonresponsiveness of Tet2-/- HSCs and HPCs to changes in oxygen tension was observed. Unlike WT HSCs, Tet2-/- HSCs and HPCs exhibited similar numbers and function in either physioxia or ambient air. The lack of response to changes in oxygen tension in Tet2-/- HSCs was associated with similar changes in self-renewal and quiescence genes among WT HSC-physioxia, Tet2-/- HSC-physioxia and Tet2-/- HSC-air. We define a novel molecular program involving Tet2 in regulating HSCs under physioxia.


Assuntos
5-Metilcitosina , Dioxigenases , 5-Metilcitosina/metabolismo , Diferenciação Celular/fisiologia , Dioxigenases/metabolismo , Regulação para Baixo , Células-Tronco Hematopoéticas/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos , Oxigênio/metabolismo
5.
Mol Ther ; 30(7): 2505-2521, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443935

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.


Assuntos
Leucemia Mielomonocítica Juvenil , Trombocitopenia , Tirosina Quinase da Agamaglobulinemia/genética , Animais , Humanos , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/metabolismo , Leucemia Mielomonocítica Juvenil/terapia , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esplenomegalia/genética , Células-Tronco/metabolismo
6.
Stem Cell Reports ; 15(1): 95-109, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32502465

RESUMO

Studies of patients with acute myeloid leukemia (AML) have led to the identification of mutations that affect different cellular pathways. Some of these have been classified as preleukemic, and a stepwise evolution program whereby cells acquire additional mutations has been proposed in the development of AML. How the timing of acquisition of these mutations and their impact on transformation and the bone marrow (BM) microenvironment occurs has only recently begun to be investigated. We show that constitutive and early loss of the epigenetic regulator, TET2, when combined with constitutive activation of FLT3, results in transformation of chronic myelomonocytic leukemia-like or myeloproliferative neoplasm-like phenotype to AML, which is more pronounced in double-mutant mice relative to mice carrying mutations in single genes. Furthermore, we show that in preleukemic and leukemic mice there are alterations in the BM niche and secreted cytokines, which creates a permissive environment for the growth of mutation-bearing cells relative to normal cells.


Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação/genética , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Heterozigoto , Homozigoto , Humanos , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Índice de Gravidade de Doença , Microambiente Tumoral , Tirosina Quinase 3 Semelhante a fms/metabolismo
7.
Cell Rep ; 26(7): 1854-1868.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759395

RESUMO

Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.


Assuntos
Metilação de DNA , Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Linfócitos T Reguladores/imunologia , Animais , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/imunologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Epigênese Genética , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/imunologia , Impressão Genômica , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo
8.
Cell Stem Cell ; 23(6): 833-849.e5, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526882

RESUMO

Inflammation is a risk factor for cancer development. Individuals with preleukemic TET2 mutations manifest clonal hematopoiesis and are at a higher risk of developing leukemia. How inflammatory signals influence the survival of preleukemic hematopoietic stem and progenitor cells (HSPCs) is unclear. We show a rapid increase in the frequency and absolute number of Tet2-KO mature myeloid cells and HSPCs in response to inflammatory stress, which results in enhanced production of inflammatory cytokines, including interleukin-6 (IL-6), and resistance to apoptosis. IL-6 induces hyperactivation of the Shp2-Stat3 signaling axis, resulting in increased expression of a novel anti-apoptotic long non-coding RNA (lncRNAs), Morrbid, in Tet2-KO myeloid cells and HSPCs. Expression of activated Shp2 in HSPCs phenocopies Tet2 loss with regard to hyperactivation of Stat3 and Morrbid. In vivo, pharmacologic inhibition of Shp2 or Stat3 or genetic loss of Morrbid in Tet2 mutant mice rescues inflammatory-stress-induced abnormalities in HSPCs and mature myeloid cells, including clonal hematopoiesis.


Assuntos
Benzoquinonas/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Células-Tronco Hematopoéticas/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Piperidinas/farmacologia , Propionatos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Feminino , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células Mieloides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
JCI Insight ; 3(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467326

RESUMO

Mutations in KIT and TET2 are associated with myeloid malignancies. We show that loss of TET2-induced PI3K activation and -increased proliferation is rescued by targeting the p110α/δ subunits of PI3K. RNA-Seq revealed a hyperactive c-Myc signature in Tet2-/- cells, which is normalized by inhibiting PI3K signaling. Loss of TET2 impairs the maturation of myeloid lineage-derived mast cells by dysregulating the expression of Mitf and Cebpa, which is restored by low-dose ascorbic acid and 5-azacytidine. Utilizing a mouse model in which the loss of TET2 precedes the expression of oncogenic Kit, similar to the human disease, results in the development of a non-mast cell lineage neoplasm (AHNMD), which is responsive to PI3K inhibition. Thus, therapeutic approaches involving hypomethylating agents, ascorbic acid, and isoform-specific PI3K inhibitors are likely to be useful for treating patients with TET2 and KIT mutations.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Mastócitos/patologia , Mastocitose/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Dioxigenases , Modelos Animais de Doenças , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Humanos , Mastocitose/tratamento farmacológico , Mastocitose/patologia , Camundongos , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-kit/genética
11.
J Biol Chem ; 291(12): 6546-58, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26817837

RESUMO

Upon exposure to environmental stress, phosphorylation of the α subunit of eIF2 (eIF2α-P) represses global protein synthesis, coincident with preferential translation of gene transcripts that mitigate stress damage or alternatively trigger apoptosis. Because there are multiple mammalian eIF2 kinases, each responding to different stress arrangements, this translational control scheme is referred to as the integrated stress response (ISR). Included among the preferentially translated mRNAs induced by eIF2α-P is that encoding the transcription factor CHOP (DDIT3/GADD153). Enhanced levels of CHOP promote cell death when ISR signaling is insufficient to restore cell homeostasis. Preferential translation of CHOP mRNA occurs by a mechanism involving ribosome bypass of an inhibitory upstream ORF (uORF) situated in the 5'-leader of the CHOP mRNA. In this study, we used biochemical and genetic approaches to define the inhibitory features of the CHOP uORF and the biological consequences of loss of the CHOP uORF on CHOP expression during stress. We discovered that specific sequences within the CHOP uORF serve to stall elongating ribosomes and prevent ribosome reinitiation at the downstream CHOP coding sequence. As a consequence, deletion of the CHOP uORF substantially increases the levels and modifies the pattern of induction of CHOP expression in the ISR. Enhanced CHOP expression leads to increased expression of key CHOP target genes, culminating in increased cell death in response to stress.


Assuntos
Elongação Traducional da Cadeia Peptídica , Estresse Fisiológico , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Células Cultivadas , Sequência Conservada , Fator de Iniciação 2 em Eucariotos/fisiologia , Fibroblastos/metabolismo , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
12.
Mol Biol Cell ; 25(10): 1686-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24648495

RESUMO

Disruption of protein folding in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a transcriptional and translational control network designed to restore protein homeostasis. Central to the UPR is PKR-like ER kinase (PERK/EIF2AK3) phosphorylation of the α subunit of eIF2 (eIF2α∼P), which represses global translation coincident with preferential translation of mRNAs, such as activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP), that serve to implement UPR transcriptional regulation. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary over a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2α∼P, whereas a notable cohort of key regulators are subject to preferential translation. From the latter group, we identified the α isoform of inhibitor of Bruton's tyrosine kinase (IBTKα) as being subject to both translational and transcriptional induction during eIF2α∼P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKα mRNA involves stress-induced relief of two inhibitory upstream open reading frames in the 5'-leader of the transcript. Depletion of IBTKα by short hairpin RNA reduced viability of cultured cells coincident with increased caspase 3/7 cleavage, suggesting that IBTKα is a key regulator in determining cell fate during the UPR.


Assuntos
Proteínas de Transporte/genética , Estresse do Retículo Endoplasmático/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética , Fator 4 Ativador da Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Proteínas de Transporte/biossíntese , Caspase 3/metabolismo , Caspase 7/metabolismo , Divisão Celular/genética , Linhagem Celular , Sobrevivência Celular/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Fosforilação , Biossíntese de Proteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno , Fator de Transcrição CHOP/genética , Sítio de Iniciação de Transcrição , Ativação Transcricional/genética
13.
J Clin Invest ; 124(1): 338-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24334458

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often associated with overexpression of TGF-ß. Given its tumor suppressor functions, it is unclear whether TGF-ß is a valid therapeutic target for PDAC. Here, we found that proliferating pancreatic cancer cells (PCCs) from human PDAC patients and multiple murine models of PDAC (mPDAC) often exhibit abundant levels of phosphorylated retinoblastoma 1 (RB) and Smad2. TGF-ß1 treatment enhanced proliferation of PCCs isolated from KrasG12D-driven mPDAC that lacked RB (KRC cells). This mitogenic effect was abrogated by pharmacological inhibition of type I TGF-ß receptor kinase, combined inhibition of MEK/Src or MEK/PI3K, and restoration of RB expression. TGF-ß1 promoted epithelial-to-mesenchymal transition (EMT), invasion, Smad2/3 phosphorylation, Src activation, Wnt reporter activity, and Smad-dependent upregulation of Wnt7b in KRC cells. Importantly, TGF-ß1-induced mitogenesis was markedly attenuated by inhibition of Wnt secretion. In an in vivo syngeneic orthotopic model, inhibition of TGF-ß signaling suppressed KRC cell proliferation, tumor growth, stroma formation, EMT, metastasis, ascites formation, and Wnt7b expression, and markedly prolonged survival. Together, these data indicate that RB dysfunction converts TGF-ß to a mitogen that activates known oncogenic signaling pathways and upregulates Wnt7b, which synergize to promote PCC invasion, survival, and mitogenesis. Furthermore, this study suggests that concomitantly targeting TGF-ß and Wnt7b signaling in PDAC may disrupt these aberrant pathways, which warrants further evaluation in preclinical models.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Neoplasias Pancreáticas/metabolismo , Proteína do Retinoblastoma/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Benzodioxóis/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Piridinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Proteína Smad2/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Biol Chem ; 287(21): 17120-17129, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22467867

RESUMO

The ARF tumor suppressor protein activates p53 in response to oncogenic stress, whereas ribosomal protein L11 induces p53 following ribosomal stress. Both proteins bind to central, albeit non-overlapping, regions of MDM2 and suppress MDM2 activity toward p53. However, it is not known whether the two pathways are functionally connected. Here we show that ARF directly binds to L11 in vitro and in cells, which then forms a complex with MDM2 and p53. L11 collaboratively enhances ARF-induced p53 transcriptional activity and cell cycle arrest. Supporting these results, knocking down L11 reduces ARF-mediated p53 accumulation and alleviates ARF-induced cell cycle arrest. Interestingly, overexpression of ARF increases the levels of ribosome-free L11 and enhances the interaction of L11 with MDM2 and p53. These results demonstrate that ARF activates p53, at least partly by induction of ribosomal stress, which results in L11 suppression of MDM2, and suggest that the ARF-MDM2-p53 and the L11-MDM2-p53 pathways are functionally connected.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Ribossômicas/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/genética
15.
J Biol Chem ; 286(13): 10939-49, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21285359

RESUMO

In response to different environmental stresses, phosphorylation of eukaryotic initiation factor-2 (eIF2) rapidly reduces protein synthesis, which lowers energy expenditure and facilitates reprogramming of gene expression to remediate stress damage. Central to the changes in gene expression, eIF2 phosphorylation also enhances translation of ATF4, a transcriptional activator of genes subject to the integrated stress response (ISR). The ISR increases the expression of genes important for alleviating stress or alternatively triggering apoptosis. One ISR target gene encodes the transcriptional regulator CHOP whose accumulation is critical for stress-induced apoptosis. In this study, we show that eIF2 phosphorylation induces preferential translation of CHOP by a mechanism involving a single upstream ORF (uORF) located in the 5'-leader of the CHOP mRNA. In the absence of stress and low eIF2 phosphorylation, translation of the uORF serves as a barrier that prevents translation of the downstream CHOP coding region. Enhanced eIF2 phosphorylation during stress facilitates ribosome bypass of the uORF due to its poor start site context, and instead it allows scanning ribosomes to translate CHOP. This new mechanism of translational control explains how expression of CHOP and the fate of cells are tightly linked to the levels of phosphorylated eIF2 and stress damage.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Fases de Leitura Aberta/fisiologia , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Fator de Transcrição CHOP/biossíntese , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/genética , Camundongos , Fosforilação/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Estresse Fisiológico/fisiologia , Fator de Transcrição CHOP/genética
16.
J Biol Chem ; 285(43): 33165-33174, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20732869

RESUMO

In response to different environmental stresses, phosphorylation of eIF2 (eIF2∼P) represses global translation coincident with preferential translation of ATF4. ATF4 is a transcriptional activator of the integrated stress response, a program of gene expression involved in metabolism, nutrient uptake, anti-oxidation, and the activation of additional transcription factors, such as CHOP/GADD153, that can induce apoptosis. Although eIF2-P elicits translational control in response to many different stress arrangements, there are selected stresses, such as exposure to UV irradiation, that do not increase ATF4 expression despite robust eIF2∼P. In this study we addressed the underlying mechanism for variable expression of ATF4 in response to eIF2∼P during different stress conditions and the biological significance of omission of enhanced ATF4 function. We show that in addition to translational control, ATF4 expression is subject to transcriptional regulation. Stress conditions such as endoplasmic reticulum stress induce both transcription and translation of ATF4, which together enhance expression of ATF4 and its target genes in response to eIF2∼P. By contrast, UV irradiation represses ATF4 transcription, which diminishes ATF4 mRNA available for translation during eIF2∼P. eIF2∼P enhances cell survival in response to UV irradiation. However, forced expression of ATF4 and its target gene CHOP leads to increased sensitivity to UV irradiation. This combination of transcriptional regulation and translational control allows the eIF2 kinase pathway to selectively repress or activate key regulatory genes subject to preferential translation, providing the integrated stress response versatility to direct the transcriptome that is essential for maintaining the balance between stress remediation and apoptosis.


Assuntos
Fator 4 Ativador da Transcrição/biossíntese , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica/fisiologia , Biossíntese de Proteínas/fisiologia , Estresse Fisiológico/fisiologia , Transcrição Gênica/fisiologia , Fator 4 Ativador da Transcrição/genética , Animais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Camundongos Knockout , Biossíntese de Proteínas/efeitos da radiação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Estresse Fisiológico/efeitos da radiação , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Resposta a Proteínas não Dobradas/fisiologia , Resposta a Proteínas não Dobradas/efeitos da radiação
17.
J Biol Chem ; 285(22): 16893-911, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20233714

RESUMO

Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.


Assuntos
Aminoácidos/química , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Nitrogênio/química , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Modelos Biológicos , Fosforilação , Biossíntese de Proteínas , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA de Transferência/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Serina-Treonina Quinases TOR , Transcrição Gênica , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...