Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643957

RESUMO

A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.


Assuntos
Doenças dos Peixes , Imunidade Inata , Infecções por Rhabdoviridae , Animais , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Rhabdoviridae/fisiologia , Índia , Perciformes/imunologia , Perciformes/virologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37749431

RESUMO

Penaeus vannamei (whiteleg shrimp) is the most widely cultured shrimp globally. Enterocytozoon hepatopenaei (EHP), a microsporidian parasite, infects P. vannamei and causes severe growth retardation, subsequent production, and economic losses in the shrimp culture. The influence of EHP infection in the shrimp gut microbiota is poorly studied, and this would be an interesting area to investigate since the gut microbiome of shrimp influences a number of key host processes such as digestion and immunity. In this study, a metagenomic approach was followed to compare the overall species richness of the gut microbiota of EHP-infected and healthy P. vannamei. Bacterial genomic DNA from the healthy and EHP-infected gut sample were profiled for the bacterial 16S rRNA gene, targeting the V3-V4 conserved region. Operational taxonomic units (OTUs), an approximation of definitive taxonomic identity, were identified based on the sequence similarity within the sample reads and clustered together using a cut-off of 97% identity using UCLUST. The OTUs were then used for the computation of alpha diversity and beta diversity for each sample. EHP-infected gut sample showed lower bacterial abundance throughout the family, class, order, genus, and species levels when compared to healthy gut sample. This study shows that the shrimp gut microbiota is sensitive and exhibits a high level of plasticity during a microsporidian infection like EHP. Furthermore, Akkermansia muciniphila, a novel probiotic bacterium, has been reported in the shrimp gut for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...