Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Recept Signal Transduct Res ; 36(1): 57-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25798666

RESUMO

The therapeutic effects of the natural antioxidant mangiferin (a xanthonoid and potent oxygen free radical scavenger), which is widely distributed in mango fruit, against CdCl(2)-induced toxicity in human renal glomerulus endothelial cells (HRGEC) were investigated. The viability of HREGCs that were treated with CdCl(2) (25 µ mol) and co-treated with mangiferin (75 µ mol) for 24 h was measured by crystal violet dye. The exposure of human glomerulus renal endothelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal proinflammatory cytokines known to play a significant role in renal inflammation. Proinflammatory cytokine secretion by human renal glomerulus endothelial cells could be the result of cadmium-induced IL-6 secretion via an NF-κB-dependent pathway. However, IL-8 secretion involves the phosphor-JNK phospho-p38 signaling pathway. The results of the current study reveal that mangiferin could prevent both cadmium-induced IL-6 and IL-8 secretion by human glomerulus endothelial cells and be used to prevent renal inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Xantonas/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Técnicas In Vitro , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-950898

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds consisting of two or more fused aromatic rings. Most of them are formed during incomplete combustion of organic materials such as wood and fossil fuels, petroleum products, and coal. The composition of PAH mixtures varies with the source and is also affected by selective weathering effects in the environment. PAHs are ubiquitous pollutants frequently found in a variety of environments such as fresh water and marine sediments, the atmosphere, and ice. Due to their widespread distribution, the environmental pollution due to PAHs has aroused global concern. Many PAHs and their epoxides are highly toxic, mutagenic and/or carcinogenic to microorganisms as well as to higher forms of life including humans. The main aim of this review is to provide contemporary information on PAH sources, route of exposure, worldwide emission rate, and adverse effects on humans, especially with reference to cancer.

3.
Eur J Med Chem ; 86: 103-12, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25147152

RESUMO

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine (e.g., Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Its anti-oxidant/anti-inflammatory effects have been demonstrated in various disease models, including those for encephalomyelitis, diabetes, asthma, and carcinogenesis. Moreover, kaempferol act as a scavenger of free radicals and superoxide radicals as well as preserve the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase, and glutathione-S-transferase. The anticancer effect of this flavonoid is mediated through different modes of action, including anti-proliferation, apoptosis induction, cell-cycle arrest, generation of reactive oxygen species (ROS), and anti-metastasis/anti-angiogenesis activities. In addition, kaempferol was found to exhibit its anticancer activity through the modulation of multiple molecular targets including p53 and STAT3, through the activation of caspases, and through the generation of ROS. The anti-tumor effects of kaempferol have also been investigated in tumor-bearing mice. The combination of kaempferol and conventional chemotherapeutic drugs produces a greater therapeutic effect than the latter, as well as reduces the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of kaempferol with a focus on its molecular targets and the possible use of this flavonoid for the treatment of inflammatory diseases and cancer.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Citostáticos/farmacologia , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Citostáticos/química , Humanos , Inflamação/patologia , Quempferóis , Neoplasias/patologia
4.
Clin Chim Acta ; 436: 332-47, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24933428

RESUMO

Oxidative stress plays a pivotal role in the development of human diseases. Reactive oxygen species (ROS) that includes hydrogen peroxide, hyphochlorus acid, superoxide anion, singlet oxygen, lipid peroxides, hypochlorite and hydroxyl radical are involved in growth, differentiation, progression and death of the cell. They can react with membrane lipids, nucleic acids, proteins, enzymes and other small molecules. Low concentrations of ROS has an indispensable role in intracellular signalling and defence against pathogens, while, higher amounts of ROS play a role in number of human diseases, including arthritis, cancer, diabetes, atherosclerosis, ischemia, failures in immunity and endocrine functions. Antioxidants presumably act as safeguard against the accumulation of ROS and their elimination from the system. The aim of this review is to highlight advances in understanding of the ROS and also to summarize the detailed impact and involvement of antioxidants in selected human diseases.


Assuntos
Antioxidantes/metabolismo , Doença , Biomarcadores/metabolismo , Alimentos , Humanos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...