Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(18): 3246-3256, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905862

RESUMO

The transcription factor 4 (TCF4) locus is a robust association finding with schizophrenia (SCZ), but little is known about the genes regulated by the encoded transcription factor. Therefore, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) of TCF4 in neural-derived (SH-SY5Y) cells to identify genome-wide TCF4 binding sites, followed by data integration with SCZ association findings. We identified 11 322 TCF4 binding sites overlapping in two ChIP-seq experiments. These sites are significantly enriched for the TCF4 Ebox binding motif (>85% having ≥1 Ebox) and implicate a gene set enriched for genes downregulated in TCF4 small-interfering RNA (siRNA) knockdown experiments, indicating the validity of our findings. The TCF4 gene set was also enriched among (1) gene ontology categories such as axon/neuronal development, (2) genes preferentially expressed in brain, in particular pyramidal neurons of the somatosensory cortex and (3) genes downregulated in postmortem brain tissue from SCZ patients (odds ratio, OR = 2.8, permutation P < 4x10-5). Considering genomic alignments, TCF4 binding sites significantly overlapped those for neural DNA-binding proteins such as FOXP2 and the SCZ-associated EP300. TCF4 binding sites were modestly enriched among SCZ risk loci from the Psychiatric Genomic Consortium (OR = 1.56, P = 0.03). In total, 130 TCF4 binding sites occurred in 39 of the 108 regions published in 2014. Thirteen genes within the 108 loci had both a TCF4 binding site ±10kb and were differentially expressed in siRNA knockdown experiments of TCF4, suggesting direct TCF4 regulation. These findings confirm TCF4 as an important regulator of neural genes and point toward functional interactions with potential relevance for SCZ.


Assuntos
Redes Reguladoras de Genes/genética , Genoma Humano/genética , Esquizofrenia/genética , Fator de Transcrição 4/genética , Sítios de Ligação/genética , Encéfalo/metabolismo , Encéfalo/patologia , Imunoprecipitação da Cromatina , Ontologia Genética , Predisposição Genética para Doença , Humanos , Neurogênese/genética , Mudanças Depois da Morte , Células Piramidais/metabolismo , Células Piramidais/patologia , Esquizofrenia/fisiopatologia , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-28893794

RESUMO

Human immunodeficiency (HIV) infection results in neurocognitive deficits in about one half of infected individuals. Despite systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting central nervous system (CNS)-localized infection. Drug abuse exacerbates HIV-induced cognitive and pathological CNS changes. This study's purpose was to investigate the effects of the HIV-1 protein Tat and methamphetamine on factors affecting drug penetration across an in vitro BBB model. Factors affecting paracellular and transcellular flux in the presence of Tat and methamphetamine were examined. Transendothelial electrical resistance, ZO-1 expression, and lucifer yellow (a paracellular tracer) flux were aspects of paracellular processes that were examined. Additionally, effects on P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP-1) mRNA (via quantitative PCR [qPCR]) and protein (via immunoblotting) expression were measured; Pgp and MRP-1 are drug efflux proteins. Transporter function was examined after exposure of Tat with or without methamphetamine using the P-gp substrate rhodamine 123 and also using the dual P-gp/MRP-1 substrate and protease inhibitor atazanavir. Tat and methamphetamine elicit complex changes affecting transcellular and paracellular transport processes. Neither Tat nor methamphetamine significantly altered P-gp expression. However, Tat plus methamphetamine exposure significantly increased rhodamine 123 accumulation within brain endothelial cells, suggesting that treatment inhibited or impaired P-gp function. Intracellular accumulation of atazanavir was not significantly altered after Tat or methamphetamine exposure. Atazanavir accumulation was, however, significantly increased by simultaneous inhibition of P-gp and MRP. Collectively, our investigations indicate that Tat and methamphetamine alter aspects of BBB integrity without affecting net flux of paracellular compounds. Tat and methamphetamine may also affect several aspects of transcellular transport.


Assuntos
Barreira Hematoencefálica/metabolismo , Metanfetamina/farmacologia , Rodaminas/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sulfato de Atazanavir/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Disfunção Cognitiva/virologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , HIV-1 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Rodaminas/farmacologia , Migração Transendotelial e Transepitelial/fisiologia , Proteína da Zônula de Oclusão-1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...