Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(14): 142701, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064503

RESUMO

The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable ^{171}Tm (t_{1/2}=1.92 yr) is part of the branching around mass A∼170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of ^{171}Tm at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (n_TOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time-of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384(40) mb, with which the estimation from the n_TOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KADoNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A∼170 branching, namely, the ^{171}Yb abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation.

2.
Rev Sci Instrum ; 87(2): 02A732, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931950

RESUMO

Current accelerator mass spectrometry experiments at the Argonne Tandem Linac Accelerator System facility at Argonne National Laboratory push us to improve the ion source performance with a large number of samples and a need to minimize cross contamination. These experiments can require the creation of ion beams from as little as a few micrograms of material. These low concentration samples push the limit of our current efficiency and stability capabilities of the electron cyclotron resonance ion source. A combination of laser ablation and sputtering techniques coupled with a newly modified multi-sample changer has been used to meet this demand. We will discuss performance, stability, and consumption rates as well as planned improvements.

3.
Phys Rev Lett ; 112(19): 192701, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877935

RESUMO

The interaction between neutron-rich nuclei plays an important role for understanding the reaction mechanism of the fusion process as well as for the energy production through pycnonuclear reactions in the crust of neutron stars. We have performed the first measurements of the total fusion cross sections in the systems (10,14,15)C+(12)C using a new active target-detector system. In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...