Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell Rep ; 43(7): 114392, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944836

RESUMO

Heterogeneous resistance to immunotherapy remains a major challenge in cancer treatment, often leading to disease progression and death. Using CITE-seq and matched 40-plex PhenoCycler tissue imaging, we performed longitudinal multimodal single-cell analysis of tumors from metastatic melanoma patients with innate resistance, acquired resistance, or response to immunotherapy. We established the multimodal integration toolkit to align transcriptomic features, cellular epitopes, and spatial information to provide deeper insights into the tumors. With longitudinal analysis, we identified an "immune-striving" tumor microenvironment marked by peri-tumor lymphoid aggregates and low infiltration of T cells in the tumor and the emergence of MITF+SPARCL1+ and CENPF+ melanoma subclones after therapy. The enrichment of B cell-associated signatures in the molecular composition of lymphoid aggregates was associated with better survival. These findings provide further insights into the establishment of microenvironmental cell interactions and molecular composition of spatial structures that could inform therapeutic intervention.

2.
Nat Commun ; 15(1): 3014, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589406

RESUMO

The biological underpinnings of therapeutic resistance to immune checkpoint inhibitors (ICI) in adolescent and young adult (AYA) melanoma patients are incompletely understood. Here, we characterize the immunogenomic profile and spatial architecture of the tumor microenvironment (TME) in AYA (aged ≤ 30 years) and older adult (aged 31-84 years) patients with melanoma, to determine the AYA-specific features associated with ICI treatment outcomes. We identify two ICI-resistant spatiotypes in AYA patients with melanoma showing stroma-infiltrating lymphocytes (SILs) that are distinct from the adult TME. The SILhigh subtype was enriched in regulatory T cells in the peritumoral space and showed upregulated expression of immune checkpoint molecules, while the SILlow subtype showed a lack of immune activation. We establish a young immunosuppressive melanoma score that can predict ICI responsiveness in AYA patients and propose personalized therapeutic strategies for the ICI-resistant subgroups. These findings highlight the distinct immunogenomic profile of AYA patients, and individualized TME features in ICI-resistant AYA melanoma that require patient-specific treatment strategies.


Assuntos
Melanoma , Humanos , Adolescente , Adulto Jovem , Idoso , Melanoma/terapia , Imunoterapia , Linfócitos T Reguladores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico , Microambiente Tumoral
3.
Sci Immunol ; 9(91): eadi9517, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241401

RESUMO

Whereas CD4+ T cells conventionally mediate antitumor immunity by providing help to CD8+ T cells, recent clinical studies have implied an important role for cytotoxic CD4+ T cells in cancer immunity. Using an orthotopic melanoma model, we provide a detailed account of antitumoral CD4+ T cell responses and their regulation by major histocompatibility complex class II (MHC II) in the skin. Intravital imaging revealed prominent interactions of CD4+ T cells with tumor debris-laden MHC II+ host antigen-presenting cells that accumulated around tumor cell nests, although direct recognition of MHC II+ melanoma cells alone could also promote CD4+ T cell control. CD4+ T cells stably suppressed or eradicated tumors even in the absence of other lymphocytes by using tumor necrosis factor-α and Fas ligand (FasL) but not perforin-mediated cytotoxicity. Interferon-γ was critical for protection, acting both directly on melanoma cells and via induction of nitric oxide synthase in myeloid cells. Our results illustrate multifaceted and context-specific aspects of MHC II-dependent CD4+ T cell immunity against cutaneous melanoma, emphasizing modulation of this axis as a potential avenue for immunotherapies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Antígenos HLA
4.
Vaccines (Basel) ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37896952

RESUMO

Mycobacterium tuberculosis is a major human pathogen, and new vaccines are needed to prevent transmission. Mucosal vaccination may confer protection against M. tuberculosis by stimulating tissue-resident memory (TRM) CD4+ T cells in the lungs. The chemokine receptor CXCR3 promotes lung recruitment of T cells, but its role in TRM development is unknown. This study demonstrates the recombinant influenza A virus vaccine PR8.p25, expressing the immunodominant M. tuberculosis T cell epitope p25, induces CXCR3 expression on p25-specific CD4+ T cells in the lungs so that the majority of vaccine-induced CD4+ TRM expresses CXCR3 at 6 weeks. However, CXCR3-/- mice developed equivalent antigen-specific CD4+ T cell responses to wild-type (WT) mice following PR8.p25, and surprisingly retained more p25-specific CD4+ TRM in the lungs than WT mice at 6 weeks. The adoptive transfer of CXCR3-/- and WT P25 T cells into WT mice revealed that the initial recruitment of vaccine-induced CD4+ T cells into the lungs was independent of CXCR3, but by 6 weeks, CXCR3-deficient P25 T cells, and especially CXCR3-/- TRM, were significantly reduced compared to CXCR3-sufficient P25 T cells. Therefore, although CXCR3 was not essential for CD4+ TRM recruitment or retention, it provided a competitive advantage for the induction of M. tuberculosis-specific CD4+ TRM in the lungs following pulmonary immunization.

5.
Immunol Cell Biol ; 101(9): 783-788, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37694341

RESUMO

In this Commentary article, as part of the 100-year celebrations of the journal, we reflect on the contribution of articles published in ICB in the field of tumor immunology. A highlight is a series of interviews conducted with three Australian-based ICB authors who have contributed key papers over the years: Rajiv Khanna, Delia Nelson and Ian Frazer.


Assuntos
Neoplasias , Publicações , Humanos , Austrália
6.
Clin Transl Immunology ; 12(8): e1463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645435

RESUMO

Objectives: SARS-CoV-2 infection causes a spectrum of clinical disease presentation, ranging from asymptomatic to fatal. While neutralising antibody (NAb) responses correlate with protection against symptomatic and severe infection, the contribution of the T-cell response to disease resolution or progression is still unclear. As newly emerging variants of concern have the capacity to partially escape NAb responses, defining the contribution of individual T-cell subsets to disease outcome is imperative to inform the development of next-generation COVID-19 vaccines. Methods: Immunophenotyping of T-cell responses in unvaccinated individuals was performed, representing the full spectrum of COVID-19 clinical presentation. Computational and manual analyses were used to identify T-cell populations associated with distinct disease states. Results: Critical SARS-CoV-2 infection was characterised by an increase in activated and cytotoxic CD4+ lymphocytes (CTL). These CD4+ CTLs were largely absent in asymptomatic to severe disease states. In contrast, non-critical COVID-19 was associated with high frequencies of naïve T cells and lack of activation marker expression. Conclusion: Highly activated and cytotoxic CD4+ T-cell responses may contribute to cell-mediated host tissue damage and progression of COVID-19. Induction of these potentially detrimental T-cell responses should be considered when developing and implementing effective COVID-19 control strategies.

7.
Clin Transl Immunology ; 12(5): e1451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206956

RESUMO

The link between Epstein-Barr virus (EBV) and multiple sclerosis (MS) has puzzled researchers since it was first discovered over 40 years ago. Until that point, EBV was primarily viewed as a cancer-causing agent, but the culmination of evidence now shows that EBV has a pivotal role in development of MS. Early MS disease is characterised by episodic neuroinflammation and focal lesions in the central nervous system (CNS) that over time develop into progressive neurodegeneration and disability. Risk of MS is vanishingly low in EBV seronegative individuals, history of infectious mononucleosis (acute symptomatic primary infection with EBV) significantly increases risk and elevated antibody titres directed against EBV antigens are well-characterised in patients. However, the underlying mechanism - or mechanisms - responsible for this interplay remains to be fully elucidated; how does EBV-induced immune dysregulation either trigger or drive MS in susceptible individuals? Furthermore, deep understanding of virological and immunological events during primary infection and long-term persistence in B cells will help to answer the many questions that remain regarding MS pathogenesis. This review discusses the current evidence and mechanisms surrounding EBV and MS, which have important implications for the future of MS therapies and prevention.

8.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920308

RESUMO

The hallmark of tuberculosis (TB) is the formation of immune cell-enriched aggregates called granulomas. While granulomas are pathologically diverse, their tissue-wide heterogeneity has not been spatially resolved at the single-cell level in human tissues. By spatially mapping individual immune cells in every lesion across entire tissue sections, we report that in addition to necrotizing granulomas, the human TB lung contains abundant non-necrotizing leukocyte aggregates surrounding areas of necrotizing tissue. These cellular lesions were more diverse in composition than necrotizing lesions and could be stratified into four general classes based on cellular composition and spatial distribution of B cells and macrophages. The cellular composition of non-necrotizing structures also correlates with their proximity to necrotizing lesions, indicating these are foci of distinct immune reactions adjacent to necrotizing granulomas. Together, we show that during TB, diseased lung tissue develops a histopathological superstructure comprising at least four different types of non-necrotizing cellular aggregates organized as satellites of necrotizing granulomas.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Granuloma/patologia , Pulmão/patologia , Macrófagos
9.
Clin Cancer Res ; 29(13): 2513-2524, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36790412

RESUMO

PURPOSE: This study characterizes intratumoral macrophage populations within baseline melanoma biopsies from patients with advanced melanoma who received either anti-PD-1 monotherapy or a combination with anti-CTLA-4. Particularly, FcγRIIIa (CD16)-expressing macrophage densities were investigated for associations with response and progression-free survival. EXPERIMENTAL DESIGN: Patients with advanced melanoma who received either anti-PD-1 monotherapy or combination anti-PD-1 and anti-CTLA-4 were retrospectively identified. Macrophage populations were analyzed within baseline melanoma biopsies via multiplex IHC in relation to treatment outcomes. RESULTS: Patients who responded to combination immune checkpoint inhibitor contained higher CD16+ macrophage densities than those who did not respond (196 vs. 7 cells/mm2; P = 0.0041). There was no diffidence in CD16+ macrophage densities in the PD-1 monotherapy-treated patients based on response (118 vs. 89 cells/mm2; P = 0.29). A significantly longer 3-year progression-free survival was observed in combination-treated patients with high intratumoral densities of CD16+ macrophages compared with those with low densities (87% vs. 42%, P = 0.0056, n = 40). No association was observed in anti-PD-1 monotherapy-treated patients (50% vs. 47%, P = 0.4636, n = 50). Melanoma biopsies with high densities of CD16+ macrophages contained upregulated gene expression of critical T-cell recruiting chemokines (CXCL9, CXCL10, and CXCL11). CONCLUSIONS: Our data demonstrate that tumor microenvironments enriched with CD16+ macrophages are favorable for response to combination anti-PD-1 and anti-CTLA-4 therapy but not anti-PD-1 monotherapy. These data provides a potential biomarker of response for combination immunotherapies in patients with metastatic melanoma. See related commentary by Smithy and Luke, p. 2345.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Estudos Retrospectivos , Receptor de Morte Celular Programada 1/imunologia , Melanoma/patologia , Antígeno CTLA-4/imunologia , Resultado do Tratamento , Macrófagos/metabolismo , Microambiente Tumoral
10.
Comput Struct Biotechnol J ; 20: 5256-5263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212528

RESUMO

Over the past decade, our understanding of human diseases has rapidly grown from the rise of single-cell spatial biology. While conventional tissue imaging has focused on visualizing morphological features, the development of multiplex tissue imaging from fluorescence-based methods to DNA- and mass cytometry-based methods has allowed visualization of over 60 markers on a single tissue section. The advancement of spatial biology with a single-cell resolution has enabled the visualization of cell-cell interactions and the tissue microenvironment, a crucial part to understanding the mechanisms underlying pathogenesis. Alongside the development of extensive marker panels which can distinguish distinct cell phenotypes, multiplex tissue imaging has facilitated the analysis of high dimensional data to identify novel biomarkers and therapeutic targets, while considering the spatial context of the cellular environment. This mini-review provides an overview of the recent advancements in multiplex imaging technologies and examines how these methods have been used in exploring pathogenesis and biomarker discovery in cancer, autoimmune and infectious diseases.

11.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36173679

RESUMO

Immune-related adverse events represent a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to antitumor responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis, irrespective of their antitumor response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared with patients who did not develop colitis, and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together, our data show that exaggerated innate and T cell responses to combination immunotherapy synergize to propel colitis in susceptible patients.


Assuntos
Colite , Receptor de Morte Celular Programada 1 , Humanos , Linfócitos T CD8-Positivos , Imunoterapia/efeitos adversos , Colite/induzido quimicamente , Colite/terapia , Fatores Imunológicos , Imunidade Inata
12.
Clin Cancer Res ; 28(21): 4677-4688, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044477

RESUMO

PURPOSE: The tumor immune microenvironment impacts the biological behavior of the tumor, but its effect on clinical outcomes in head and neck cutaneous squamous cell carcinomas (HNcSCC) is largely unknown. EXPERIMENTAL DESIGN: We compared the immune milieu of high-risk HNcSCC that never progressed to metastasis with those that metastasized using multiparameter imaging mass cytometry. The cohort included both immunosuppressed patients (IS) and patients with an absence of clinical immune-suppression (ACIS). Spatial analyses were used to identify cellular interactions that were associated with tumor behavior. RESULTS: Nonprogressing primary HNcSCC were characterized by higher CD8+ and CD4+ T-cell responses, including numerically increased regulatory T cells. In contrast, primary lesions from HNcSCC patients who progressed were largely devoid of T cells with lower numbers of innate immune cells and increased expression of checkpoint receptors and in the metastatic lesions were characterized by an accumulation of B cells. Spatial analysis reveals multiple cellular interactions associated with nonprogressing primary tumors that were distinct in primary tumors of disease-progressing patients. Cellular regional analysis of the tumor microenvironment also shows squamous cell-enriched tumor regions associated with primary nonprogressing tumors. CONCLUSIONS: Effective responses from both CD8+ and CD4+ T cells in the tumor microenvironment are essential for immune control of primary HNcSCC. Our findings indicate that the early events that shape the immune responses in primary tumors dictate progression and disease outcomes in HNcSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Análise Espacial
13.
Front Immunol ; 13: 979993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003398

RESUMO

While the tumor immune microenvironment (TIME) of metastatic melanoma has been well characterized, the primary melanoma TIME is comparatively poorly understood. Additionally, although the association of tumor-infiltrating lymphocytes with primary melanoma patient outcome has been known for decades, it is not considered in the current AJCC melanoma staging system. Detailed immune phenotyping of advanced melanoma has revealed multiple immune biomarkers, including the presence of CD8+ T-cells, for predicting response to immunotherapies. However, in primary melanomas, immune biomarkers are lacking and CD8+ T-cells have yet to be extensively characterized. As recent studies combining immune features and clinicopathologic characteristics have created more accurate predictive models, this study sought to characterize the TIME of primary melanomas and identify predictors of patient outcome. We first phenotyped CD8+ T cells in fresh stage II primary melanomas using flow cytometry (n = 6), identifying a CD39+ tumor-resident CD8+ T-cell subset enriched for PD-1 expression. We then performed Opal multiplex immunohistochemistry and quantitative pathology-based immune profiling of CD8+ T-cell subsets, along with B cells, NK cells, Langerhans cells and Class I MHC expression in stage II primary melanoma specimens from patients with long-term follow-up (n = 66), comparing patients based on their recurrence status at 5 years after primary diagnosis. A CD39+CD103+PD-1- CD8+ T-cell population (P2) comprised a significantly higher proportion of intratumoral and stromal CD8+ T-cells in patients with recurrence-free survival (RFS) ≥5 years vs those with RFS <5 years (p = 0.013). Similarly, intratumoral B cells (p = 0.044) and a significantly higher B cell density at the tumor/stromal interface were associated with RFS. Both P2 and B cells localized in significantly closer proximity to melanoma cells in patients who remained recurrence-free (P2 p = 0.0139, B cell p = 0.0049). Our results highlight how characterizing the TIME in primary melanomas may provide new insights into how the complex interplay of the immune system and tumor can modify the disease outcomes. Furthermore, in the context of current clinical trials of adjuvant anti-PD-1 therapies in high-risk stage II primary melanoma, assessment of B cells and P2 could identify patients at risk of recurrence and aid in long-term treatment decisions at the point of primary melanoma diagnosis.


Assuntos
Melanoma , Neoplasias Cutâneas , Biomarcadores , Humanos , Imunofenotipagem , Melanoma/patologia , Microambiente Tumoral , Melanoma Maligno Cutâneo
14.
Ther Adv Med Oncol ; 14: 17588359221113270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898965

RESUMO

Hepatocellular carcinoma (HCC) is a common and deadly cancer worldwide. Many factors contribute to mortality and place an individual at high risk of developing HCC, including viral infection, alcohol intake, metabolic-associated disease, autoimmunity and genetic liver disorders. Although there are many therapeutics available, much about this disease remains to be understood. This is most evident when investigating the tumour microenvironment (TME). Both innate and adaptive immune cells have been associated with carcinogenesis within the TME of HCC patients. The ability to interrogate the TME more thoroughly with spatial technologies continues to improve, both at the experimental and analytical stages. This review provides insight into technologies available to investigate the TME, and how such technologies are beneficial for improving our understanding of HCC carcinogenesis.

15.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35688560

RESUMO

BACKGROUND: Adjuvant immune checkpoint inhibitor (ICI) immunotherapies have significantly reduced the recurrence rate in high-risk patients with stage III melanoma compared with surgery alone. However, 48% of anti-PD-1-treated patients will develop recurrent disease within 4 years. There is a need to identify biomarkers of recurrence after adjuvant ICI to enable identification of patients in need of alternative treatment strategies. As cytotoxic T cells are critical for the antitumor response to anti-PD-1, we sought to determine whether specific subsets were predictive of recurrence in anti-PD-1-treated high-risk patients with stage III melanoma. METHODS: Associations with recurrence in patients with stage III melanoma were sought by analyzing resection specimens (n=103) taken prior to adjuvant nivolumab/pembrolizumab±low-dose/low-interval ipilimumab. Multiplex immunohistochemistry was used to quantify intratumoral CD8+ T-cell populations using phenotypical markers CD39, CD103, and PD-1. RESULTS: With a median follow-up of 19.3 months, 37/103 (36%) of patients had a recurrence. Two CD8+ T-cell subpopulations were significantly associated with recurrence. First, CD39+ tumor-resident memory cells (CD39+CD103+PD-1+CD8+ (CD39+ Trm)) comprised a significantly higher proportion of CD8+ T cells in recurrence-free patients (p=0.0004). Conversely, bystander T cells (CD39-CD103-PD-1-CD8+) comprised a significantly greater proportion of T cells in patients who developed recurrence (p=0.0002). Spatial analysis identified that CD39+ Trms localized significantly closer to melanoma cells than bystander T cells. Multivariable analysis confirmed significantly improved recurrence-free survival (RFS) in patients with a high proportion of intratumoral CD39+ Trms (1-year RFS high 78.1% vs low 49.9%, HR 0.32, 95% CI 0.15 to 0.69), no complete lymph node dissection performed, and less advanced disease stage (HR 2.85, 95% CI 1.13 to 7.19, and HR 1.29, 95% CI 0.59 to 2.82). The final Cox regression model identified patients who developed recurrence with an area under the curve of 75.9% in the discovery cohort and 69.5% in a separate validation cohort (n=33) to predict recurrence status at 1 year. CONCLUSIONS: Adjuvant immunotherapy-treated patients with a high proportion of CD39+ Trms in their baseline melanoma resection have a significantly reduced risk of melanoma recurrence. This population of T cells may not only represent a biomarker of RFS following anti-PD-1 therapy, but may also be an avenue for therapeutic manipulation and enhancing outcomes for immunotherapy-treated patients with cancer.


Assuntos
Melanoma , Neoplasias Cutâneas , Apirase/imunologia , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Receptor de Morte Celular Programada 1/uso terapêutico , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
16.
NPJ Vaccines ; 6(1): 143, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848711

RESUMO

Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guérin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilised, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralising antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralised B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally.

17.
Immunol Cell Biol ; 99(8): 894-906, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34080230

RESUMO

Regulatory T cells (Tregs) play a critical role in immune regulation and peripheral tolerance. While different types of Tregs have been identified in both mice and humans, much of our understanding about how these cells maintain immune homeostasis is derived from animal models. In this study, we examined two distinct human lymphoid organs to understand how repeated exposure to infections at the mucosal surface influences the phenotype and tissue localization of Tregs. We show that while Tregs in both tonsils and spleen express a tissue-resident phenotype, they accumulate in greater numbers in tonsils. Tonsillar-resident Tregs exhibit a highly suppressive phenotype with significantly increased expression of CD39, ICOS and CTLA-4 compared with their counterparts in circulation or in the spleen. Functionally, resident Tregs are able effectively to suppress T cell proliferation. We further demonstrate that tonsillar-resident Tregs share key features of T follicular helper cells. Spatial analysis reveals that the vast majority of resident Tregs are localized at the border of the T-zone and B cell follicle, as well as within the lymphocyte pockets enriched with resident memory T cells. Together our findings suggest that resident Tregs are strategically co-localized to maintain immune homeostasis at sites of recurrent inflammation.


Assuntos
Ativação Linfocitária , Linfócitos T Reguladores , Animais , Linfócitos B , Humanos , Camundongos , Fenótipo
18.
World J Clin Oncol ; 12(4): 238-248, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33959477

RESUMO

BACKGROUND: Recent studies in non-colorectal malignancy have associated T resident memory (TRM) cells with improved patient survival. It is unknown if TRM plays a role in colorectal cancer (CRC). AIM: To examine the potential role of TRM cells in providing immunogenicity in CRC stratified by microsatellite instability (MSI) and BRAF status. METHODS: Patients with known MSI and BRAF mutation status were eligible for inclusion in this study. CRC tumour sections stained with haematoxylin and eosin were microscopically reviewed and the images scanned prior to assessment for location of invading edge and core of tumour. Sequential sections were prepared for quantitative multiplex immunohistochemistry (IHC) staining. Opal Multiplex IHC staining was performed with appropriate positive and negative controls and imaged using a standard fluorescent microscope fitted with a spectral scanning camera (Mantra) in conjunction with Mantra snap software. Images were unmixed and annotated in inForm 2.2.0. Statistical analysis was performed using Graphpad Prism Version 7 and Stata Version 15. RESULTS: Seventy-two patients with known MSI and BRAF status were included in the study. All patients were assessed for MSI by IHC and high resolution capillary electrophoresis testing and 44 of these patients successfully underwent quantitative multiplex IHC staining. Overall, there was a statistically significant increase in CD8+ TRM cells in the MSI (BRAF mutant and wild type) group over the microsatellite stable (MSS) group. There was a statistically significant difference in CD8+ TRM between high level MSI (MSI-H):BRAF mutant [22.57, 95% confidence interval (CI): 14.31-30.84] vs MSS [8.031 (95%CI: 4.698-11.36)], P = 0.0076 andMSI-H:BRAF wild type [16.18 (95%CI: 10.44-21.93)] vs MSS [8.031 (95%CI: 4.698-11.36)], P = 0.0279. There was no statistically significant difference in CD8 T cells (both CD8+CD103- and CD8+CD103+TRM) between MSI-H: BRAF mutant and wild type CRC. CONCLUSION: This study has shown that CD8+ TRM are found in greater abundance in MSI-H CRC, both BRAF mutant and MSI-H:BRAF wild type, when compared with their MSS counterpart. CD8+ TRM may play a role in the immunogenicity in MSI-H CRC (BRAF mutant and BRAF wild type). Further studies should focus on the potential immunogenic qualities of TRM cells and investigate potential immunotherapeutic approaches to improve treatment and survival associated with CRC.

19.
Cancers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802954

RESUMO

Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.

20.
Pigment Cell Melanoma Res ; 34(3): 529-549, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32939993

RESUMO

The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.


Assuntos
Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Microambiente Tumoral , Animais , Humanos , Melanoma/patologia , Melanoma/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...