Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299186

RESUMO

Phytopathogenic bacteria not only affect crop yield and quality but also the environment. Understanding the mechanisms involved in their survival is essential to develop new strategies to control plant disease. One such mechanism is the formation of biofilms; i.e., microbial communities within a three-dimensional structure that offers adaptive advantages, such as protection against unfavorable environmental conditions. Biofilm-producing phytopathogenic bacteria are difficult to manage. They colonize the intercellular spaces and the vascular system of the host plants and cause a wide range of symptoms such as necrosis, wilting, leaf spots, blight, soft rot, and hyperplasia. This review summarizes up-to-date information about saline and drought stress in plants (abiotic stress) and then goes on to focus on the biotic stress produced by biofilm-forming phytopathogenic bacteria, which are responsible for serious disease in many crops. Their characteristics, pathogenesis, virulence factors, systems of cellular communication, and the molecules implicated in the regulation of these processes are all covered.

2.
Vet Res Commun ; 47(3): 1379-1391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36809600

RESUMO

INTRODUCTION: Paenibacillus larvae is a spore-forming bacillus, the most important bacterial pathogen of honeybee larvae and the causative agent of American foulbrood (AFB). Control measures are limited and represent a challenge for both beekeepers and researchers. For this reason, many studies focus on the search for alternative treatments based on natural products. AIM: The objective of this study was to determine the antimicrobial activity of the hexanic extract (HE) of Achyrocline satureioides on P. larvae and the inhibitory activity on some mechanisms related to pathogenicity. MATERIAL AND METHODS: The Minimum Inhibitory Concentration (MIC) of the HE was determined by the broth microdilution technique and the Minimum Bactericidal Concentration (MBC) by the microdrop technique. Swimming and swarming motility was evaluated in plates with 0.3 and 0.5% agar, respectively. Biofilm formation was evaluated and quantified by the Congo red and crystal violet method. The protease activity was evaluated by the qualitative technique on skim milk agar plates. RESULTS: It was determined that the MIC of the HE on four strains of P. larvae ranged between 0.3 and 9.37 µg/ml and the MBC between 1.17 and 150 µg/ml. On the other hand, sub-inhibitory concentrations of the HE were able to decrease swimming motility, biofilm formation and the proteases production of P. larvae.


Assuntos
Achyrocline , Anti-Infecciosos , Paenibacillus larvae , Animais , Achyrocline/química , Ágar/farmacologia , Virulência , Larva , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...