Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(5): 4506-4518, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38785541

RESUMO

The memory-enhancing activity of Matricaria chamomilla hydroalcoholic extract (MCE) is already being investigated by behavioral and biochemical assays in scopolamine-induced amnesia rat models, while the effects of scopolamine (Sco) on cerebral glucose metabolism are examined as well. Nevertheless, the study of the metabolic profile determined by an enriched MCE has not been performed before. The present experiments compared metabolic quantification in characteristic cerebral regions and behavioral characteristics for normal, only diseased, diseased, and MCE- vs. Galantamine (Gal)-treated Wistar rats. A memory deficit was induced by four weeks of daily intraperitoneal Sco injection. Starting on the eighth day, the treatment was intraperitoneally administered 30 min after Sco injection for a period of three weeks. The memory assessment comprised three maze tests. Glucose metabolism was quantified after the 18F-FDG PET examination. The right amygdala, piriform, and entorhinal cortex showed the highest differential radiopharmaceutical uptake of the 50 regions analyzed. Rats treated with MCE show metabolic similarity with normal rats, while the Gal-treated group shows features closer to the diseased group. Behavioral assessments evidenced a less anxious status and a better locomotor activity manifested by the MCE-treated group compared to the Gal-treated group. These findings prove evident metabolic ameliorative qualities of MCE over Gal classic treatment, suggesting that the extract could be a potent neuropharmacological agent against amnesia.

2.
Neurol Int ; 15(4): 1423-1442, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38132971

RESUMO

Transcranial direct current stimulation (tDCS) came into consideration in recent years as a promising, non-invasive form of neuromodulation for individuals suffering from mild cognitive impairment (MCI). MCI represents a transitional stage between normal cognitive aging and more severe cognitive decline, which appears in neurodegenerative diseases, such as Alzheimer's disease. Numerous studies have shown that tDCS can have several useful effects in patients with MCI. It is believed to enhance cognitive functions, including memory and attention, potentially slowing down the progression of neurodegeneration and cognitive decline. tDCS is believed to work by modulating neuronal activity and promoting synaptic plasticity in the brain regions associated with cognition. Moreover, tDCS is generally considered safe and well-tolerated, making it an attractive option for long-term therapeutic use in MCI. However, further research is needed to determine the optimal stimulation parameters and long-term effects of tDCS in this population, as well as its potential to serve as a complementary therapy alongside other interventions for MCI. In this review, we included 16 randomized clinical trials containing patients with MCI who were treated with tDCS. We aim to provide important evidence for the cognitive enhancement using tDCS in patients with MCI, summarizing the effects and conclusions found in several clinical trials, and discuss its main mechanisms.

3.
Curr Issues Mol Biol ; 45(2): 1519-1535, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36826043

RESUMO

Dementia represents a clinical syndrome characterised by progressive decline in memory, language, visuospatial and executive function, personality, and behaviour, causing loss of abilities to perform instrumental or essential activities of daily living. The most common cause of dementia is Alzheimer's disease (AD), which accounts for up to 80% of all dementia cases. Despite that extensive studies regarding the etiology and risk factors have been performed in recent decades, and how the current knowledge about AD pathophysiology significantly improved with the recent advances in science and technology, little is still known about its treatment options. In this controverted context, a nutritional approach could be a promising way to formulate improved AD management strategies and to further analyse possible treatment strategy options based on personalised diets, as Nutritional Psychiatry is currently gaining relevance in neuropsychiatric disease treatment. Based on the current knowledge of AD pathophysiology, as well as based on the repeatedly documented anti-inflammatory and antioxidant potential of different functional foods, we aimed to find, describe, and correlate several dietary compounds that could be useful in formulating a nutritional approach in AD management. We performed a screening for relevant studies on the main scientific databases using keywords such as "Alzheimer's disease", "dementia", "treatment", "medication", "treatment alternatives", "vitamin E", "nutrition", "selenium", "Ginkgo biloba", "antioxidants", "medicinal plants", and "traditional medicine" in combinations. Results: nutrients could be a key component in the physiologic and anatomic development of the brain. Several nutrients have been studied in the pursuit of the mechanism triggered by the pathology of AD: vitamin D, fatty acids, selenium, as well as neuroprotective plant extracts (i.e., Ginkgo biloba, Panax ginseng, Curcuma longa), suggesting that the nutritional patterns could modulate the cognitive status and provide neuroprotection. The multifactorial origin of AD development and progression could suggest that nutrition could greatly contribute to the complex pathological picture. The identification of adequate nutritional interventions and the not yet fully understood nutrient activity in AD could be the next steps in finding several innovative treatment options for neurodegenerative disorders.

4.
Medicina (Kaunas) ; 58(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35888641

RESUMO

Is a cyclic neuropeptide produced primarily in the hypothalamus and plays an important neuromodulatory role for other neurotransmitter systems, with an impact on behavior, response to danger, stress, and complex social interactions, such as pair bonding and child care. This narrative expert review examines the literature on oxytocin as a brain hormone. We focused on oxytocin structure, distribution, genetics, and the oxytocin receptor system, as well as the relationship of oxytocin with other neurotransmitters and the resulting impacts on the main psychiatric disorders. Oxytocin levels have been correlated over time with mental illness, with numerous studies focusing on oxytocin and the pathophysiology of the main psychiatric disorders, such as autism, schizophrenia, personality disorders, mood, and eating disorders. We highlight the role oxytocin plays in improving symptoms such as anxiety, depression, and social behavior, as the literature suggests. Risk factors and causes for psychiatric disorders range from genetic to environmental and social factors. Oxytocin could impact the latter, being linked with other neurotransmitter systems that are responsible for integrating different situations during the development phases of individuals. Also, these systems have an important role in how the body responds to stressors or bonding with others, helping with the creation of social support groups that could speed up recovery in many situations. Oxytocin has the potential to become a key therapeutic agent for future treatment and prevention strategies concerning the main psychiatric disorders.


Assuntos
Transtorno Autístico , Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Neurotransmissores/uso terapêutico , Ocitocina/uso terapêutico , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...