Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 1): 118774, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552827

RESUMO

Cellulose degrading bacterial diversity of Bhitarkanika mangrove ecosystem, India, was uncovered and the cellulose degradation mechanism in Bacillus haynesii DS7010 under the modifiers such as pH (pCO2), salinity and lead (Pb) was elucidated in the present study. The abundance of cellulose degrading heterotrophic bacteria was found to be higher in mangrove sediment than in water. The most potential strain, B. haynesii DS7010 showed the presence of endoglucanase, exoglucanase and ß-glucosidase with the maximum degradation recorded at 48 h of incubation, with 1% substrate concentration at 41 °C incubation temperature. Two glycoside hydrolase genes, celA and celB were confirmed in this bacterium. 3D structure prediction of the translated CelA and CelB proteins showed maximum similarities with glycoside hydrolase 48 (GH48) and glycoside hydrolase 5 (GH5) respectively. Native PAGE followed by zymogram assay unveiled the presence of eight isoforms of cellulase ranged from 78 kDa to 245 kDa. Among the stressors, most adverse effect was observed under Pb stress at 1400 ppm concentration, followed by pH at pH 4. This was indicated by prolonged lag phase growth, higher reactive oxygen species (ROS) production, lower enzyme activity and downregulation of celA and celB gene expressions. Salinity augmented bacterial metabolism up to 3% NaCl concentration. Mangrove leaf litter degradation by B. haynesii DS7010 indicated a substantial reduction in cellulolytic potential of the bacterium in response to the synergistic effect of the stressors. Microcosm set up with the stressors exhibited 0.97% decrease in total carbon (C%) and 0.02% increase in total nitrogen (N%) after 35 d of degradation while under natural conditions, the reduction in C and the increase in N were 4.05% and 0.2%, respectively. The findings of the study suggest the cellulose degradation mechanism of a mangrove bacterium and its resilience to the future consequences of environmental pollution and climate change.


Assuntos
Bacillus , Celulose , Bacillus/genética , Bacillus/metabolismo , Celulose/metabolismo , Índia , Áreas Alagadas , Salinidade , Biodegradação Ambiental , Chumbo/toxicidade , Chumbo/metabolismo , Concentração de Íons de Hidrogênio
2.
Environ Res ; 214(Pt 4): 114128, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36007573

RESUMO

Biofilm-forming bacteria adhere to the substrates and engage in the nutrient cycling process. However, environmental conditions may interrupt the biofilm formation ability, which ultimately may affect various biogeochemical cycles. The present study reports the effect of varying pH and subsequent change in pCO2 on the survivability, biofilm formation, and synthesis of extracellular polymeric substances (EPS) of a biofilm-forming marine bacterium Bacillus stercoris GST-03 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India. Understanding the pH-dependent alteration in EPS constituents, and associated functional groups of a marine bacterium will provide better insight into the adaptability of the bacteria in future ocean acidification scenarios. The strain was found to tolerate and form biofilm up to pH 4, with the maximum biofilm formation at pH 6. EPS yield and the synthesis of the key components of the EPS, including carbohydrate, protein, and lipid, were found maximum at pH 6. Changes in biofilm formation patterns and various topological parameters at varying pH/pCO2 conditions were observed. A cellular chaining pattern was observed at pH 4, and maximum biofilm formation was obtained at pH 6 with biomass of 5.28582 ± 0.5372 µm3/µm2 and thickness of 9.982 ± 1.5288 µm. Structural characterization of EPS showed changes in various functional groups of constituent macromolecules with varying pH. The amorphous nature of the EPS and the changes in linkages and associated functional groups (-R2CHOR, -CH3, and -CH2) with pH variation was confirmed. EPS showed a two-step degradation with a maximum weight loss of 59.147% and thermal stability up to 480 °C at pH 6. The present work efficiently demonstrates the role of EPS in providing structural and functional stability to the biofilm in varying pH conditions. The findings will provide a better understanding of the adaptability of marine bacteria in the future effect of ocean acidification.


Assuntos
Bacillus , Matriz Extracelular de Substâncias Poliméricas , Bactérias/metabolismo , Biofilmes , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar
3.
Environ Sci Pollut Res Int ; 29(22): 32467-32512, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35182344

RESUMO

Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.


Assuntos
Ecossistema , Áreas Alagadas , Carbono , Sequestro de Carbono , Mudança Climática , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...