Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837881

RESUMO

The colocation of elemental species with host biomolecules such as lipids and metabolites may shed new light on the dysregulation of metabolic pathways and how these affect disease pathogeneses. Alkali metals have been the subject of extensive research, are implicated in various neurodegenerative and infectious diseases and are known to disrupt lipid metabolism. Desorption electrospray ionisation (DESI) is a widely used approach for molecular imaging, but previous work has shown that DESI delocalises ions such as potassium (K) and chlorine (Cl), precluding the subsequent elemental analysis of the same section of tissue. The solvent typically used for the DESI electrospray is a combination of methanol and water. Here we show that a novel solvent system, (50:50 (%v/v) MeOH:EtOH) does not delocalise elemental species and thus enables elemental mapping to be performed on the same tissue section post-DESI. Benchmarking the MeOH:EtOH electrospray solvent against the widely used MeOH:H2O electrospray solvent revealed that the MeOH:EtOH solvent yielded increased signal-to-noise ratios for selected lipids. The developed multimodal imaging workflow was applied to a lung tissue section containing a tuberculosis granuloma, showcasing its applicability to elementally rich samples displaying defined structural information.

2.
J Am Soc Mass Spectrom ; 33(12): 2263-2272, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36398943

RESUMO

Characterizing proton beam damage in biological materials is of interest to enable the integration of proton microprobe elemental mapping techniques with other imaging modalities. It is also of relevance to obtain a deeper understanding of mechanical damage to lipids in tissues during proton beam cancer therapy. We have developed a novel strategy to characterize proton beam damage to lipids in biological tissues based on mass spectrometry imaging. This methodology is applied to characterize changes to lipids in tissues ex vivo, irradiated under different conditions designed to mitigate beam damage. This work shows that performing proton beam irradiation at ambient pressure, as well as including the application of an organic matrix prior to irradiation, can reduce damage to lipids in tissues. We also discovered that, irrespective of proton beam irradiation, placing a sample in a vacuum prior to desorption electrospray ionization imaging can enhance lipid signals, a conclusion that may be of future benefit to the mass spectrometry imaging community.


Assuntos
Imagem Multimodal , Prótons
3.
Anal Chem ; 94(34): 11798-11806, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35981335

RESUMO

Elemental imaging is widely used for imaging cells and tissues but rarely in combination with organic mass spectrometry, which can be used to profile lipids and measure drug concentrations. Here, we demonstrate how elemental imaging and a new method for spatially resolved lipidomics (DAPNe-LC-MS, based on capillary microsampling and liquid chromatography mass spectrometry) can be used in combination to probe the relationship between metals, drugs, and lipids in discrete areas of tissues. This new method for spatial lipidomics, reported here for the first time, has been applied to rabbit lung tissues containing a lesion (caseous granuloma) caused by tuberculosis infection. We demonstrate how elemental imaging with spatially resolved lipidomics can be used to probe the association between ion accumulation and lipid profiles and verify local drug distribution.


Assuntos
Lipidômica , Lipídeos , Animais , Biomarcadores , Cromatografia Líquida/métodos , Lipídeos/análise , Espectrometria de Massas/métodos , Coelhos
4.
Anal Chem ; 93(40): 13450-13458, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597513

RESUMO

Elemental and molecular imaging play a crucial role in understanding disease pathogenesis. To accurately correlate elemental and molecular markers, it is desirable to perform sequential elemental and molecular imaging on a single-tissue section. However, very little is known about the impact of performing these measurements in sequence. In this work, we highlight some of the challenges and successes associated with performing elemental mapping in sequence with mass spectrometry imaging. Specifically, the feasibility of molecular mapping using the mass spectrometry imaging (MSI) techniques matrix-assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) in sequence with the elemental mapping technique particle-induced X-ray emission (PIXE) is explored. Challenges for integration include substrate compatibility, as well as delocalization and spectral changes. We demonstrate that while sequential imaging comes with some compromises, sequential DESI-PIXE imaging is sufficient to correlate sulfur, iron, and lipid markers in a single tissue section at the 50 µm scale.


Assuntos
Oligoelementos , Lipídeos , Imagem Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Enxofre
5.
Anal Chem ; 91(24): 15411-15417, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747247

RESUMO

Direct analyte-probed nanoextraction (DAPNe) is a technique that allows extraction of drug and endogenous compounds from a discrete location on a tissue sample using a nano capillary filled with solvent. Samples can be extracted from spot diameters as low as 6 µm. Studies previously undertaken by our group have shown that the technique can provide good precision (5%) for analyzing drug molecules in 150 µm diameter areas of homogenized tissue, provided an internal standard is sprayed on to the tissue prior to analysis. However, without an isotopically labeled standard, the repeatability is poor, even after normalization to the spot area or matrix compounds. By application to tissue homogenates spiked with drug compounds, we can demonstrate that it is possible to significantly improve the repeatability of the technique by incorporating a liquid chromatography separation step. Liquid chromatography is a technique for separating compounds prior to mass spectrometry (LC-MS) which enables separation of isomeric compounds that cannot be discriminated using mass spectrometry alone, as well as reducing matrix interferences. Conventionally, LC-MS is carried out on bulk or homogenized samples, which means analysis is essentially an average of the sample and does not take into account discrete areas. This work opens a new opportunity for spatially resolved liquid chromatography mass spectrometry with precision better than 20%.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31414505

RESUMO

RATIONALE: Paper spray offers a rapid screening test without the need for sample preparation. The incomplete extraction of paper spray allows for further testing using more robust, selective and sensitive techniques such as liquid chromatography/mass spectrometry (LC/MS). Here we develop a two-step process of paper spray followed by LC/MS to (1) rapidly screen a large number of samples and (2) confirm any disputed results. This demonstrates the applicability for testing medication adherence from a fingerprint. METHODS: Following paper spray analysis, drugs of abuse samples were analysed using LC/MS. All analyses were completed using a Q Exactive™ Plus Orbitrap™ mass spectrometer. This two-step procedure was applied to fingerprints collected from patients on a maintained dose of the antipsychotic drug quetiapine. RESULTS: The extraction efficiency of paper spray for two drugs of abuse and metabolites was found to be between 15 and 35% (analyte dependent). For short acquisition times, the extraction efficiency was found to vary between replicates by less than 30%, enabling subsequent analysis by LC/MS. This two-step process was then applied to fingerprints collected from two patients taking the antipsychotic drug quetiapine, which demonstrates how a negative screening result from paper spray can be resolved using LC/MS. CONCLUSIONS: We have shown for the first time the sequential analysis of the same sample using paper spray and LC/MS, as well as the detection of an antipsychotic drug from a fingerprint. We propose that this workflow may also be applied to any type of sample compatible with paper spray, and will be especially convenient where only one sample is available for analysis.

7.
Forensic Sci Int Synerg ; 1: 214-220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32411973

RESUMO

Paper spray mass spectrometry is a rapid and sensitive tool for explosives detection but has so far only been demonstrated using high resolution mass spectrometry, which bears too high a cost for many practical applications. Here we explore the potential for paper spray to be implemented in field applications with portable mass spectrometry. This involved (a) replacing the paper substrate with a swabbing material (which we call "swab spray") for compatibility with standard collection materials; (b) collection of explosives from surfaces; (c) an exploration of interferences within a ±â€¯0.5 m/z window; and (d) demonstration of the use of high-field assisted waveform ion mobility spectrometer (FAIMS) for enhanced selectivity. We show that paper and Nomex® are viable collection materials, with Nomex providing cleaner spectra and therefore greater potential for integration with portable mass spectrometers. We show that sensitive detection using swab spray will require a mass spectrometer with a mass resolving power of 4000 or more. We show that by coupling the swab spray ionisation source with FAIMS, it is possible to reduce background interferences, thereby facilitating the use of a low resolving power (e.g. quadrupole) mass spectrometer.

8.
Clin Chem ; 63(11): 1745-1752, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28939761

RESUMO

BACKGROUND: Paper spray mass spectrometry (PS-MS) is a technique that has recently emerged and has shown excellent analytical sensitivity to a number of drugs in blood. As an alternative to blood, fingerprints have been shown to provide a noninvasive and traceable sampling matrix. Our goal was to validate the use of fingerprint samples to detect cocaine use. METHODS: Samples were collected on triangular pieces (168 mm2) of washed Whatman Grade I chromatography paper. Following application of internal standard, spray solvent and a voltage were applied to the paper before mass spectrometry detection. A fingerprint visualization step was incorporated into the analysis procedure by addition of silver nitrate solution and exposing the sample to ultraviolet light. RESULTS: Limits of detection for cocaine, benzoylecgonine, and methylecgonine were 1, 2, and 31 ng/mL respectively, with relative standard deviations < 33%. No matrix effects were observed. Analysis of 239 fingerprint samples yielded a 99% true-positive rate and a 2.5% false-positive rate, based on the detection of cocaine, benzoylecgonine, or methylecgonine with use of a single fingerprint. CONCLUSIONS: The method offers a qualitative and noninvasive screening test for cocaine use. The analysis method developed is rapid (4 min/sample) and requires no sample preparation.


Assuntos
Cocaína/análogos & derivados , Cocaína/análise , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Dermatoglifia , Humanos , Limite de Detecção , Papel , Saliva/química , Suor/química
9.
Radiat Res ; 178(3): 182-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22823572

RESUMO

The Surrey vertical beam is a new facility for targeted irradiation of cells in medium with singly counted ions. A duo-plasmatron ion source and a 2 MV Tandem™ accelerator supply a range of ions from protons to calcium for this beamline and microscope endstation, with energy ranges from 0.5 to 12 MeV. A magnetic quadrupole triplet lens is used to focus the beam of ions. We present the design of this beamline, and early results showing the capability to count single ions with 98% certainty on CR-39 track etch. We also show that the beam targeting accuracy is within 5 µm and selectively target human fibroblasts with a <5 µm carbon beam, using γ-H2AX immunofluorescence to demonstrate which cell nuclei were irradiated. We discuss future commissioning steps necessary to achieve submicron targeting accuracy with this beamline.


Assuntos
Nanotecnologia/instrumentação , Aceleradores de Partículas/instrumentação , Radiobiologia/instrumentação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Cricetinae , Cricetulus , Retroalimentação , Humanos , Umidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...