Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25553, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384550

RESUMO

Bioluminescence resonance energy transfer (BRET) is one of the most promising approaches used for noninvasive imaging of protein-protein interactions in vivo. Recently, our team has discovered a genetically encodable bioluminescent system from the fungus Neonothopanus nambi and identified a novel luciferase that represents an imaging tool orthogonal to other luciferin-luciferase systems. We demonstrated the possibility of using the fungal luciferase as a new BRET donor by creating fused pairs with acceptor red fluorescent proteins, of which tdTomato provided the highest BRET efficiency. Using this new BRET system, we also designed a mTOR pathway specific rapamycin biosensor by integrating the FRB and FKBP12 protein dimerization system. We demonstrated the specificity and efficacy of the new fungal luciferase-based BRET combination for application in mammalian cell culture that will provide the unique opportunity to perform multiplexed BRET assessment in the future.

2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687774

RESUMO

This study demonstrates the development of a humanized luciferase imaging reporter based on a recently discovered mushroom luciferase (Luz) from Neonothopanus nambi. In vitro and in vivo assessments showed that human-codon-optimized Luz (hLuz) has significantly higher activity than native Luz in various cancer cell types. The potential of hLuz in non-invasive bioluminescence imaging was demonstrated by human tumor xenografts subcutaneously and by the orthotopic lungs xenograft in immunocompromised mice. Luz enzyme or its unique 3OH-hispidin substrate was found to be non-cross-reacting with commonly used luciferase reporters such as Firefly (FLuc2), Renilla (RLuc), or nano-luciferase (NLuc). Based on this feature, a non-overlapping, multiplex luciferase assay using hLuz was envisioned to surpass the limitation of dual reporter assay. Multiplex reporter functionality was demonstrated by designing a new sensor construct to measure the NF-κB transcriptional activity using hLuz and utilized in conjunction with two available constructs, p53-NLuc and PIK3CA promoter-FLuc2. By expressing these constructs in the A2780 cell line, we unveiled a complex macromolecular regulation of high relevance in ovarian cancer. The assays performed elucidated the direct regulatory action of p53 or NF-κB on the PIK3CA promoter. However, only the multiplexed assessment revealed further complexities as stabilized p53 expression attenuates NF-κB transcriptional activity and thereby indirectly influences its regulation on the PIK3CA gene. Thus, this study suggests the importance of live cell multiplexed measurement of gene regulatory function using more than two luciferases to address more realistic situations in disease biology.


Assuntos
Agaricales , Neoplasias Ovarianas , Humanos , Animais , Feminino , Camundongos , NF-kappa B , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética , Luciferases/genética , Agaricales/genética , Classe I de Fosfatidilinositol 3-Quinases
3.
Biochem Biophys Res Commun ; 502(3): 318-323, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29792858

RESUMO

Odontosyllis undecimdonta is a marine syllid polychaete that produces bright internal and exuded bioluminescence. Despite over fifty years of biochemical investigation into Odontosyllis bioluminescence, the light-emitting small molecule substrate and catalyzing luciferase protein have remained a mystery. Here we describe the discovery of a bioluminescent protein fraction from O. undecimdonta, the identification of the luciferase using peptide and RNA sequencing, and the in vitro reconstruction of the bioluminescence reaction using highly purified O. undecimdonta luciferin and recombinant luciferase. Lastly, we found no identifiably homologous proteins in publicly available datasets. This suggests that the syllid polychaetes contain an evolutionarily unique luciferase among all characterized luminous taxa.


Assuntos
Luciferases/química , Luciferases/metabolismo , Poliquetos/enzimologia , Sequência de Aminoácidos , Animais , Evolução Molecular , Japão , Luciferases/genética , Luminescência , Poliquetos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...