Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(3): 1002-1016, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37118992

RESUMO

Typical delimitation trapping survey designs for area-wide (nonlocalized) insect populations are regularly spaced grids, and alternative shapes have not been evaluated. We hypothesized that transect-based designs could give similar detection rates with significantly shorter servicing distances. We used the TrapGrid model to investigate novel "trap-sect" designs incorporating crossed, spoked, and parallel lines of traps, comparing them to a regular grid, in single survey and multiple-site scenarios. We calculated minimum servicing distances and simulated mean probabilities of detecting a pest population, judging overall performance of trap network designs using both metrics. For single sites, trap-sect designs reduced service distances by 65-89%, and most had similar detection probabilities as the regular grid. Kernel-smoothed intensity plots indicated that the best performing trap-sect designs distributed traps more fully across the area. With multiple sites (3 side by side), results depended on insect dispersal ability. All designs performed similarly in terms of detection for highly mobile insects, suggesting that designs minimizing service distances would be best for such pests. For less mobile pests the best trap-sect designs had 4-6 parallel lines, or 8 spokes, which reduced servicing distances by 33-50%. Comparisons of hypothetical trap-sect arrays to real program trap locations for 2 pests demonstrated that the novel designs reduced both trap numbers and service distances, with little differences in mean nearest trap distance to random pest locations. Trap-sect designs in delimitation surveys could reduce costs and increase program flexibility without harming the ability to detect populations.


Assuntos
Controle de Insetos , Mariposas , Animais , Controle de Insetos/métodos , Insetos
2.
Sci Rep ; 12(1): 11089, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773305

RESUMO

In the United States of America, delimitation trapping surveys with square grids have been used for decades for exotic insects without rigorous evaluation. We used simulations to investigate the effectiveness of two representative designs: an 8-km grid for Acrolepiopsis assectella (leek moth) and a 14.5-km grid for Ceratitis capitata (Mediterranean fruit fly, "Medfly"). We investigated grid compositions and design factors, measuring performance as the mean probability of pest capture over all traps, p(capture), and designed improved grids for both species. For the standard designs, p(capture) was 0.86 for leek moth and 0.71 for Medfly, with the latter performing better due to greater lure and trap attractiveness. For both designs, 86 percent or more of mean p(capture) came from core area captures. Egress testing indicated that both grids were oversized. An improved grid for leek moths would use 177 traps in a 4.8-km diameter circle, which had mean p(capture) = 0.73 and reduced the cost by 80 percent. The best Medfly grid was a 4.8-km diameter circle with 232 traps, which gave mean p(capture) of 0.66 and reduced the cost by 86 percent. Simulation may be used to improve trapping survey plans, often saving significantly on costs while maintaining survey performance.


Assuntos
Ceratitis capitata , Mariposas , Animais , Simulação por Computador , Sistemas Computacionais , Controle de Insetos
3.
J Econ Entomol ; 114(6): 2581-2590, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633043

RESUMO

Fully trapped survey designs are widely used to delimit adventive pests populations that can be detected using traps and lures. Delimitation includes verifying the presence of the pest and determining its spatial extent. The size and shape of the survey design and the density of traps can vary; however, resulting variation in detecting efficiency is often unknown. We used a trapping network simulation model with diffusion-based insect movement to investigate delimiting survey trapping design performance for fully trapped and some modified designs. Simulations included randomized outbreak locations in a core area and a duration of 30 d. We assessed impacts of insect dispersal ability, grid size and shape, and trap attractiveness and density on survey performance, measured as mean probability of capturing individual pests [p(capture)]. Most published grids are square, but circles performed equally well and are more efficient. Over different grid sizes, p(capture) increased for insects with greater dispersal ability but was generally unresponsive to size because most captures occurred in central areas. For low dispersing insects, the likelihood of egress was approximately zero with a 3.2-km square grid, whereas an 11.3-km grid was needed to contain highly vagile insects. Trap attractiveness affected p(capture) more strongly than density: lower densities of poorly attractive traps may underperform expectations. Variable density designs demonstrated potential for cost savings but highlighted that resource-intensive outer bands are critical to boundary determination. Results suggesting that many grids are oversized need empirical verification, whereas other principles, such as using circular shapes, are readily adoptable now.


Assuntos
Controle de Insetos , Mariposas , Animais
4.
Pest Manag Sci ; 75(12): 3129-3134, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31318146

RESUMO

Agricultural industrialization and the subsequent reliance on pesticides has resulted in numerous unintended consequences, such as impacts upon the environment and by extension human health. Eco-efficiency is a strategy for sustainably increasing production, while simultaneously decreasing these externalities on ecological systems. Eco-efficiency is defined as the ratio of production to environmental impacts. It has been widely adopted to improve chemical production, but we investigate the challenges of applying eco-efficiency to pesticide use. Eco-efficiency strategies include technological innovation, investment in research and development, improvement of business processes, and accounting for market forces. These components are often part of integrated pest management (IPM) systems that include alternatives to pesticides, but its implementation is often thwarted by commercial realities and technical challenges. We propose the creation and adoption of an eco-efficiency index for pesticide use so that the broad benefits of eco-efficient strategies such as IPM can be more readily quantified. We propose an index based upon the ratio of crop yield to a risk quotient (RQ) calculated from pesticide toxicity. Eco-efficiency is an operational basis for optimizing pest management for sustainability. It naturally favors adoption of IPM and should be considered by regulators, researchers, and practitioners involved in pest management. © 2019 Society of Chemical Industry.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Controle de Pragas/métodos , Praguicidas/toxicidade , Medição de Risco/estatística & dados numéricos
5.
Pest Manag Sci ; 75(11): 2865-2872, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31211465

RESUMO

Several problems limit the productivity and acceptance of crop protection, including pesticide overuse, pesticide resistance, poor adoption of integrated pest management (IPM), declining funding for research and extension, and inefficiencies of scale. We discuss the proposition that alternative business models for crop protection can address these problems by incentivizing and benefiting from efficiency of pesticide use. Currently, business models are not linked to the adoption of IPM and are sometimes at odds with IPM practices. We explore a business model based on the provision of pest management adequacy through services rather than the sale of pesticide products. Specifically, we advocate for establishment of crop protection adequacy standards that would allow a market system to maximize efficiency. Changing some of the relationships between agricultural companies and producers from one based on products to one based on services is an idea worthy of debate and evaluation for improving the efficiency of pest management. Contemporary information technology enhancing monitoring and coordination warrants attention in this debate. © 2019 Society of Chemical Industry.


Assuntos
Proteção de Cultivos/economia , Controle de Pragas/economia , Praguicidas , Comércio , Modelos Econômicos
6.
J Exp Bot ; 66(2): 549-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25189594

RESUMO

Mi-1.2 is a single dominant gene in tomato that confers race-specific resistance against certain phloem-feeding herbivores including aphids, whiteflies, psyllids, and root-knot nematodes. Few prior studies have considered the potential non-target effects of race-specific resistance genes (R genes), and this paper evaluates the compatibility of Mi-mediated resistance in tomato with a beneficial zoophytophagous predator, Orius insidiosus (Say). In addition to preying on aphids and other pests, this piercing-sucking insect also feeds from the xylem, epidermis, and/or mesophyll, and oviposits within plant tissues. Comparison of O. insidiosus confined to isogenic tomato plants with and without Mi-1.2 revealed that immatures of O. insidiosus had lower survival on resistant plants even when the immatures were provisioned with prey that did not feed on the host plant. Molecular gut content analysis confirmed that adults and immatures of O. insidiosus feed on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, and bioassays suggest that resistance does not affect oviposition rates, plant sampling, or prey acceptance by O. insidiosus adults. These results demonstrate a direct negative impact of R-gene-mediated host plant resistance on a non-target beneficial species, and reveal that Mi-mediated resistance can impact organisms that do not feed on phloem sap. Through laser capture microdissection and RT-PCR, Mi-1.2 transcripts were detected in the epidermis and mesophyll as well as the phloem of tomato plants, consistent with our observations that Mi-mediated resistance is active outside the phloem. These results suggest that the mode of action and potential ecological impacts of Mi-mediated resistance are broader than previously assumed.


Assuntos
Afídeos/fisiologia , Resistência à Doença/genética , Genes de Plantas , Heterópteros/fisiologia , Controle Biológico de Vetores , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Animais , Sistema Digestório/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Herbivoria , Solanum lycopersicum/imunologia , Oviposição/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...