Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Environ Qual ; 42(4): 1119-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216363

RESUMO

Reduction of As(V) and Fe(III) is commonly the dominant process controlling the fate and transport of As in soils and sediments. However, the physical structure of such environments produces complex heterogeneity in biogeochemical processes controlling the fate and transport of As. To resolve the role of soil and sediment physical structure on the distribution of biogeochemical processes controlling the fate and transport of As, we examined the biogeochemical transformations of As and Fe within constructed aggregates-a fundamental unit of soil structure. Spherical aggregates were made with As(V)- or As(III)-bearing, ferrihydrite-coated quartz that was fused with agarose and placed in a cylindrical reactor; advective flow of anoxic solutes was then initiated around the aggregates to examine As release from a dual-pore domain system. To examine the impact of biotic As(V) and Fe(III) reduction, constructed aggregates having As(V)-bearing, ferrihydrite-coated quartz inoculated with sp. ANA-3 were placed in flow-through reactors under anoxic and aerated advective flow. Consistent with desorption from advective columns, As(III) is released to advecting water more prevalently than As(V) within abiotic aggregate systems, indicating a greater lability and concomitant enhanced propensity for transport of As(III) relative to As(V). During reaction with , As release to advecting water was similar between anoxic and aerated systems for the first 20 d; thereafter, the anoxic advecting solutes increased As release relative to the aerated counterpart. With aerated advecting solutes, Fe remained oxidized (or was oxidized) in the aggregate exterior, forming a protective barrier that limited As release to the advective channel. However, anaerobiosis within the aggregate interior, even with aerated advective flow, promotes internal repartitioning of As to the exterior region.


Assuntos
Arsênio , Solo , Arsênio/química , Compostos Férricos/química , Ferro/química , Oxirredução
2.
J Environ Qual ; 42(6): 1605-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602401

RESUMO

Selenium was recognized as an important aquatic contaminant following the identification of widespread deformities in waterfowl at the agricultural drainage evaporation ponds of the Kesterson Reservoir (California) in 1983. Since then, California has been the focal point for global research and management of Se contamination. We analyzed the history and current developments in science, policy, and management of irrigation-induced Se contamination in California. In terms of management, we evaluated the effects of improvements in the design of local attenuation methods (drainage reuse and evaporation ponds) in conjunction with the development of programs for Se load reductions at the regional scale (namely the Grassland Bypass Project). In terms of policy, the USEPA is currently working on site-specific water quality criteria for the San Francisco Bay Delta that may be a landmark for future legislation on Se in natural water bodies. We provide a critical analysis of this approach and discuss challenges and opportunities in expanding it to other locations such as the Salton Sea. Management lessons learned in California and the novel policy approach may help prevent future events of Se contamination.

3.
Front Microbiol ; 3: 45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22375137

RESUMO

Enhanced anthropogenic inputs of nitrogen (N) and sulfur (S) have disturbed their biogeochemical cycling in aquatic and terrestrial ecosystems. The N and S cycles interact with one another through competition for labile forms of organic carbon between nitrate-reducing and sulfate-reducing bacteria. Furthermore, the N and S cycles could interact through nitrate [Formula: see text] reduction coupled to S oxidation, consuming [Formula: see text] and producing sulfate [Formula: see text] The research questions of this study were: (1) what are the environmental factors explaining variability in N and S biogeochemical reaction rates in a wide range of surficial aquatic sediments when [Formula: see text] and [Formula: see text] are present separately or simultaneously, (2) how the N and S cycles could interact through S oxidation coupled to [Formula: see text] reduction, and (3) what is the extent of sulfate reduction inhibition by nitrate, and vice versa. The N and S biogeochemical reaction rates were measured on intact surface sediment slices using flow-through reactors. The two terminal electron acceptors [Formula: see text] and [Formula: see text] were added either separately or simultaneously and [Formula: see text] and [Formula: see text] reduction rates as well as [Formula: see text] reduction linked to S oxidation were determined. We used redundancy analysis, to assess how environmental variables were related to these rates. Our analysis showed that overlying water pH and salinity were two dominant environmental factors that explain 58% of the variance in the N and S biogeochemical reaction rates when [Formula: see text] and [Formula: see text] were both present. When [Formula: see text] and [Formula: see text] were added separately, however, sediment N content in addition to pH and salinity accounted for 62% of total variance of the biogeochemical reaction rates. The [Formula: see text] addition had little effect on [Formula: see text] reduction; neither did the [Formula: see text] addition inhibit [Formula: see text] reduction. The presence of [Formula: see text] led to [Formula: see text] production most likely due to the oxidation of sulfur. Our observations suggest that metal-bound S, instead of free sulfide produced by [Formula: see text] reduction, was responsible for the S oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...