Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(5): 100753, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527648

RESUMO

Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is the binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.


Assuntos
Antígenos de Bactérias , Imunoglobulina G , Ligação Proteica , Streptococcus pyogenes , Animais , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Camundongos , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunidade Adaptativa , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Anticorpos Antibacterianos/imunologia , Mapas de Interação de Proteínas , Espectrometria de Massas , Proteínas de Transporte/metabolismo , Proteínas de Transporte/imunologia , Feminino , Interações Hospedeiro-Patógeno/imunologia
2.
J Innate Immun ; 15(1): 599-613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245510

RESUMO

Extracellular vesicles (EVs) are derived from the membrane of platelets and released into the circulation upon activation or injury. Analogous to the parent cell, platelet-derived EVs play an important role in hemostasis and immune responses by transfer of bioactive cargo from the parent cells. Platelet activation and release of EVs increase in several pathological inflammatory diseases, such as sepsis. We have previously reported that the M1 protein released from the bacterial pathogen Streptococcus pyogenes directly mediates platelet activation. In this study, EVs were isolated from these pathogen-activated platelets using acoustic trapping, and their inflammation phenotype was characterized using quantitative mass spectrometry-based proteomics and cell-based models of inflammation. We determined that M1 protein mediated release of platelet-derived EVs that contained the M1 protein. The isolated EVs derived from pathogen-activated platelets contained a similar protein cargo to those from physiologically activated platelets (thrombin) and included platelet membrane proteins, granule proteins, cytoskeletal proteins, coagulation factors, and immune mediators. Immunomodulatory cargo, complement proteins, and IgG3 were significantly enriched in EVs isolated from M1 protein-stimulated platelets. Acoustically enriched EVs were functionally intact and exhibited pro-inflammatory effects on addition to blood, including platelet-neutrophil complex formation, neutrophil activation, and cytokine release. Collectively, our findings reveal novel aspects of pathogen-mediated platelet activation during invasive streptococcal infection.


Assuntos
Plaquetas , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Ativação Plaquetária , Fenótipo , Inflamação/metabolismo
3.
Infect Immun ; 90(2): e0046221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34898252

RESUMO

Sepsis is a life-threatening complication of infection that is characterized by a dysregulated inflammatory state and disturbed hemostasis. Platelets are the main regulators of hemostasis, and they also respond to inflammation. The human pathogen Streptococcus pyogenes can cause local infection that may progress to sepsis. There are more than 200 serotypes of S. pyogenes defined according to sequence variations in the M protein. The M1 serotype is among 10 serotypes that are predominant in invasive infection. M1 protein can be released from the surface and has previously been shown to generate platelet, neutrophil, and monocyte activation. The platelet-dependent proinflammatory effects of other serotypes of M protein associated with invasive infection (M3, M5, M28, M49, and M89) are now investigated using a combination of multiparameter flow cytometry, enzyme-linked immunosorbent assay (ELISA), aggregometry, and quantitative mass spectrometry. We demonstrate that only M1, M3, and M5 protein serotypes can bind fibrinogen in plasma and mediate fibrinogen- and IgG-dependent platelet activation and aggregation, release of granule proteins, upregulation of CD62P to the platelet surface, and complex formation with neutrophils and monocytes. Neutrophil and monocyte activation, determined as upregulation of surface CD11b, is also mediated by M1, M3, and M5 protein serotypes, while M28, M49, and M89 proteins failed to mediate activation of platelets or leukocytes. Collectively, our findings reveal novel aspects of the immunomodulatory role of fibrinogen acquisition and platelet activation during streptococcal infections.


Assuntos
Sepse , Infecções Estreptocócicas , Fibrinogênio/metabolismo , Humanos , Ativação Plaquetária , Sorogrupo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo
4.
J Immunol ; 202(2): 503-513, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30541884

RESUMO

Platelets circulate the bloodstream and principally maintain hemostasis. Disturbed hemostasis, a dysregulated inflammatory state, and a decreased platelet count are all hallmarks of severe invasive Streptococcus pyogenes infection, sepsis. We have previously demonstrated that the released M1 protein from S. pyogenes activates platelets, and this activation is dependent on the binding of M1 protein, fibrinogen, and M1-specific IgG to platelets in susceptible donors. In this study, we characterize the M1-associated protein interactions in human plasma and investigate the acquisition of proteins to the surface of activated platelets and the consequences for platelet immune function. Using quantitative mass spectrometry, M1 protein was determined to form a protein complex in plasma with statistically significant enrichment of fibrinogen, IgG3, and complement components, especially C1q. Using flow cytometry, these plasma proteins were also confirmed to be acquired to the platelet surface, resulting in complement activation on M1-activated human platelets. Furthermore, we demonstrated an increased phagocytosis of M1-activated platelets by monocytes, which was not observed with other physiological platelet agonists. This reveals a novel mechanism of complement activation during streptococcal sepsis, which contributes to the platelet consumption that occurs in sepsis.


Assuntos
Plaquetas/imunologia , Membrana Celular/metabolismo , Sepse/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/fisiologia , Anticorpos Antibacterianos/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Ativação do Complemento , Complemento C1q/metabolismo , Fibrinogênio/metabolismo , Citometria de Fluxo , Hemostasia , Humanos , Fagocitose , Ativação Plaquetária , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...