Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 13(5): 1288-1304, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36209313

RESUMO

Lipid-based formulations (LBFs) are used by the pharmaceutical industry in oral delivery systems for both poorly water-soluble drugs and biologics. Digestibility is key for the performance of LBFs and in vitro lipolysis is commonly used to compare the digestibility of LBFs. Results from in vitro lipolysis experiments depend highly on the experimental conditions and formulation characteristics, such as droplet size (which defines the surface area available for digestion) and interfacial structure. This study introduced the intrinsic lipolysis rate (ILR) as a surface area-independent approach to compare lipid digestibility. Pure acylglycerol nanoemulsions, stabilized with polysorbate 80 at low concentration, were formulated and digested according to a standardized pH-stat lipolysis protocol. A methodology originally developed to calculate the intrinsic dissolution rate of poorly water-soluble drugs was adapted for the rapid calculation of ILR from lipolysis data. The impact of surfactant concentration on the apparent lipolysis rate and lipid structure on ILR was systematically investigated. The surfactant polysorbate 80 inhibited lipolysis of tricaprylin nanoemulsions in a concentration-dependent manner. Coarse-grained molecular dynamics simulations supported these experimental observations. In the absence of bile and phospholipids, tricaprylin was shielded from lipase at 0.25% polysorbate 80. In contrast, the inclusion of bile salt and phospholipid increased the surfactant-free area and improved the colloidal presentation of the lipids to the enzyme, especially at 0.125% polysorbate 80. At a constant and low surfactant content, acylglycerol digestibility increased with decreasing acyl chain length, decreased esterification, and increasing unsaturation. The calculated ILR of pure acylglycerols was successfully used to accurately predict the IRL of binary lipid mixtures. The ILR measurements hold great promise as an efficient method supporting pharmaceutical formulation scientists in the design of LBFs with specific digestion profiles.


Assuntos
Lipídeos , Lipólise , Lipídeos/química , Polissorbatos/química , Glicerídeos , Preparações Farmacêuticas , Tensoativos/química , Água , Solubilidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-28470000

RESUMO

Estimating the in vivo absorption profile of a drug is essential when developing extended-release medications. Such estimates can be obtained by measuring plasma concentrations over time and inferring the absorption from a model of the drug's pharmacokinetics. Of particular interest is to predict the bioavailability-the fraction of the drug that is absorbed and enters the systemic circulation. This paper presents a framework for addressing this class of estimation problems and gives advice on the choice of method. In parametric methods, a model is constructed for the absorption process, which can be difficult when the absorption has a complicated profile. Here, we place emphasis on non-parametric methods that avoid making strong assumptions about the absorption. A modern estimation method that can address very general input-estimation problems has previously been presented. In this method, the absorption profile is modeled as a stochastic process, which is estimated using Markov chain Monte Carlo techniques. The applicability of this method for extended-release formulation development is evaluated by analyzing a dataset of Bydureon, an injectable extended-release suspension formulation of exenatide, a GLP-1 receptor agonist for treating diabetes. This drug is known to have non-linear pharmacokinetics. Its plasma concentration profile exhibits multiple peaks, something that can make parametric modeling challenging, but poses no major difficulties for non-parametric methods. The method is also validated on synthetic data, exploring the effects of sampling and noise on the accuracy of the estimates.

3.
Mol Pharm ; 10(11): 4252-62, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24079718

RESUMO

Two clinical trials and a large set of in vitro transporter experiments were performed to investigate if the hepatobiliary disposition of the direct thrombin inhibitor prodrug AZD0837 is the mechanism for the drug-drug interaction with ketoconazole observed in a previous clinical study. In Study 1, [(3)H]AZD0837 was administered to healthy male volunteers (n = 8) to quantify and identify the metabolites excreted in bile. Bile was sampled directly from the jejunum by duodenal aspiration via an oro-enteric tube. In Study 2, the effect of ketoconazole on the plasma and bile pharmacokinetics of AZD0837, the intermediate metabolite (AR-H069927), and the active form (AR-H067637) was investigated (n = 17). Co-administration with ketoconazole elevated the plasma exposure to AZD0837 and the active form approximately 2-fold compared to placebo, which may be explained by inhibited CYP3A4 metabolism and reduced biliary clearance, respectively. High concentrations of the active form was measured in bile with a bile-to-plasma AUC ratio of approximately 75, indicating involvement of transporter-mediated excretion of the compound. AZD0837 and its metabolites were further investigated as substrates of hepatic uptake and efflux transporters in vitro. Studies in MDCK-MDR1 cell monolayers and P-glycoprotein (P-gp) expressing membrane vesicles identified AZD0837, the intermediate, and the active form as substrates of P-gp. The active form was also identified as a substrate of the multidrug and toxin extrusion 1 (MATE1) transporter and the organic cation transporter 1 (OCT1), in HEK cells transfected with the respective transporter. Ketoconazole was shown to inhibit all of these three transporters; in particular, inhibition of P-gp and MATE1 occurred in a clinically relevant concentration range. In conclusion, the hepatobiliary transport pathways of AZD0837 and its metabolites were identified in vitro and in vivo. Inhibition of the canalicular transporters P-gp and MATE1 may lead to enhanced plasma exposure to the active form, which could, at least in part, explain the clinical interaction with ketoconazole.


Assuntos
Cetoconazol/metabolismo , Fígado/metabolismo , Adulto , Amidinas/metabolismo , Azetidinas/metabolismo , Bile/metabolismo , Interações Medicamentosas , Humanos , Masculino , Adulto Jovem
4.
Eur J Pharm Sci ; 49(4): 773-81, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23684934

RESUMO

Accurate determination of potential drug-drug interaction mediated by efflux transporters (tDDI) is crucial to assess the risk of pharmacokinetic interaction and toxicity of drugs. Passive permeability and uptake transporter mediated transport are important covariates of cell-based inhibition assays that need to be taken into consideration when performing kinetic analysis of data. Vesicular uptake inhibition has been considered by regulatory agencies as a viable alternative for testing tDDI potential of low passive permeability drugs in particular. Membranes prepared from a P-gp overexpressing human cell line has superior transport properties over membranes prepared from Sf9 cells and cholesterol enriched Sf9 membranes. P-gp expressed in this membrane effluxes N-methyl-quinidine (NMQ) with high affinity (K(m) is 3.65 µM) and a high rate (V(max) is 656 pmol/mg protein/min). Digoxin, vinblastine and paclitaxel, established P-gp substrates inhibited transport of NMQ with estimated K(i) values of 250, 0.1 and 0.6 µM, respectively. A panel of 11 drugs that have been listed by regulatory agencies as reference inhibitors were used to validate the assay to predict clinical inhibition potential. All the drugs that have been implicated in P-gp mediated DDI were found to be inhibitors in a relevant concentration range.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Bioensaio , Interações Medicamentosas , Quinolinas/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Humanos , Insetos , Células K562 , Preparações Farmacêuticas/metabolismo , Reprodutibilidade dos Testes , Vesículas Transportadoras
5.
Drug Metab Dispos ; 39(12): 2440-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21949244

RESUMO

The quantification of P-glycoprotein [P-gp, ABCB1, multidrug resistance 1 (MDR1)] protein in biological matrices is considered a key factor missing for useful translation of in vitro functional data to the in vivo situation and for comparison of transporter data among different in vitro models. In the present study a liquid chromatography (LC)-mass spectrometry method was developed to quantify P-gp membrane protein levels in different biological matrices. The amount of P-gp transporter protein was measured in Caco-2 cell monolayers and in inside-out human embryonic kidney (HEK)-MDR1 vesicles. From both in vitro systems, two preparations with different functionality were used. Transporter function was determined as digoxin efflux in Caco-2 cell monolayers and N-methylquinidine (NMQ) uptake in membrane vesicles, and, in addition, mRNA expression in the Caco-2 monolayers was measured. The results showed an excellent relationship between NMQ uptake functionality in inside-out HEK-MDR1 vesicles and protein contents. Similar concordance between the digoxin efflux and P-gp content in different Caco-2 cell cultures was observed, whereas mRNA levels are indicative of increased P-gp content and activity in older Caco-2 cultures, however, not yielding the same quantitative relationship. The results from both Caco-2 and HEK-MDR1 membrane vesicles confirm that the protein content is directly related to the level of activity in the respective system. The method presented here to quantify P-gp protein by LC-multiple reaction monitoring will facilitate the development of future methodologies to bridge between expression systems and cell/tissue models and to scale from in vitro models to whole organs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Células CACO-2 , Eletroforese em Gel de Poliacrilamida , Humanos , Transporte Proteico , RNA Mensageiro/metabolismo , Espectrometria de Massas por Ionização por Electrospray
6.
Drug Metab Dispos ; 39(2): 239-46, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20978106

RESUMO

Ketoconazole has been shown in clinical trials to increase the plasma exposure of the oral anticoagulant prodrug AZD0837 [(2S)-N-{4- [(Z)-amino(methoxyimino)methyl]benzyl}-1-{(2R)-2-[3-chloro-5-(difluoromethoxy)phenyl]-2-hydroxyethanoyl}-azetidine-2-carboxamide] and its active metabolite, AR-H067637 [(2S)-N-{4-[amino(imino)methyl]benzyl}-1-{(2R)-2-[3-chloro-5-(difluoromethoxy)phenyl]-2-hydroxyethanoyl}-azetidine-2-carboxamide]. To investigate the biotransformation of AZD0837 and the effect of ketoconazole on this process, we used an experimental model in pigs that allows repeated sampling from three blood vessels, the bile duct, and a perfused intestinal segment. The pigs received AZD0837 (500 mg) given enterally either alone (n = 5) or together with single-dose ketoconazole (600 mg) (n = 6). The prodrug (n = 2) and its active metabolite (n = 2) were also administered intravenously to provide reference doses. The plasma data revealed considerable interindividual variation in the exposure of the prodrug, intermediate metabolite, and active metabolite. However, AR-H067637 was detected at very high concentrations in the bile with low variability (Ae(bile) = 53 ± 6% of the enteral dose), showing that the compound had indeed been formed in all of the animals and efficiently transported into the bile canaliculi. Concomitant dosing with ketoconazole increased the area under the plasma concentration-time curve for AZD0837 (by 99%) and for AR-H067637 (by 51%). The effect on the prodrug most likely arose from inhibited CYP3A-mediated metabolism. Reduced metabolism also seemed to explain the increased plasma exposure of the active compound because ketoconazole prolonged the terminal half-life with no apparent effect on the extensive biliary excretion and biliary clearance. These in vivo results were supported by in vitro depletion experiments for AR-H067637 in pig liver microsomes with and without the addition of ketoconazole.


Assuntos
Amidinas/farmacocinética , Antitrombinas/farmacocinética , Azetidinas/farmacocinética , Bile/metabolismo , Mucosa Intestinal/metabolismo , Cetoconazol/farmacologia , Fígado/metabolismo , Amidinas/administração & dosagem , Amidinas/sangue , Amidinas/farmacologia , Animais , Antitrombinas/administração & dosagem , Antitrombinas/sangue , Antitrombinas/farmacologia , Azetidinas/administração & dosagem , Azetidinas/sangue , Azetidinas/farmacologia , Transporte Biológico/efeitos dos fármacos , Biotransformação , Interações Medicamentosas , Cetoconazol/administração & dosagem , Masculino , Estrutura Molecular , Perfusão , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...