Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 108(3): 495-502, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28307866

RESUMO

We conducted a 12-week field manipulation experiment in which we raised the nitrogen availability (ammonium sulfate fertilization to roots) and/or water potential (freshwater misting) of decaying leaf blades of a saltmarsh grass (smooth cordgrass, Spartina alterniflora) in triplicate 11-m2 plots, and compared the manipulated plots to unmanipulated, control plots. The ascomycetous fungi that dominate cordgrass leaf decomposition processes under natural conditions exhibited a boosting (>2-fold) of living standing crop (ergosterol content) by misting at the 1 st week after tagging of senescent leaves, but afterwards, living-fungal standing crop on misted blades was equivalent to that on control blades, confirming prior evidence that Spartina fungi are well adapted to natural, irregular wetting. Misting also caused 2-fold sharper temporal declines than control in instantaneous rates of fungal production (ergosterol synthesis), 5-fold declines in density of sexual reproductive structures that were not shown by controls, and 2-fold higher rates of loss of plant organic mass. Extra nitrogen gave a long-term boost to living-fungal standing crop (about 2-fold at 12 weeks), which was also reflected in rates of fungal production at 4 weeks, suggesting that saltmarsh fungal production is nitrogen-limited. Although bacterial and green-microalgal crops were boosted by manipulations of nitrogen and/or water, their maximal crops remained ≤0.3 or 2% (bacteria or green microalgae, respectively) of contemporaneous living-fungal crop. The fungal carbon-productivity values obtained, in conjunction with rates of loss of plant carbon, hinted that fungal yield can be high (>50%), and that it is boosted by high availability of nitrogen. We speculate that one partial cause of high fungal yield could be subsidy of fungal growth by dissolved organic carbon from outside decomposing leaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...