Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Bioproc Tech ; : 1-13, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37363379

RESUMO

This study aimed to increase the encapsulation efficiency (EE%) of liposomes loaded with green tea polyphenols (GTP), by optimizing with response surface methodology (RSM), characterizing the obtained particles, and modeling their release under conventional heating and pulsed electric fields. GTP-loaded liposomes were prepared under conditions of Lecithin/Tween 80 (4:1, 1:1, and 1:4), cholesterol (0, 30, and 50%), and chitosan as coating (0, 0.05, and 0.1%). Particles were characterized by size, polydispersity index, ζ-potential, electrical conductivity, and optical microscopy. The release kinetics was modeled at a temperature of 60 °C and an electric field of 5.88 kV/cm. The optimal manufacturing conditions of GTP liposomes (ratio of lecithin/Tween 80 of 1:1, cholesterol 50%, and chitosan 0.1%) showed an EE% of 60.89% with a particle diameter of 513.75 nm, polydispersity index of 0.21, ζ-potential of 33.67 mV, and electrical conductivity of 0.14 mS/cm. Optical microscopy verified layering in the liposomes. The kinetic study revealed that the samples with chitosan were more stable to conventional heating, and those with higher cholesterol content were more stable to pulsed electric fields. However, in both treatments, the model with the best fit was the Peppas model. The results of the study allow us to give an indication of the knowledge of the behavior of liposomes under conditions of thermal and non-thermal treatments, helping the development of new functional ingredients based on liposomes for processed foods.

2.
Front Nutr ; 9: 810827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369077

RESUMO

The purpose of this study was to apply different pulsed electric field (PEF) conditions as a pretreatment to the freeze-drying (FD) process of Chilean abalone and to assess its effects on protein quality, microstructure, and digestibility of the freeze-dried product. The treatments PEF (0.5, 1.0, and 2.0 kV cm-1) and cooking (CO) were applied at 100°C × 15 min. Then, their performances were subjected to a FD process. PEF + CO pretreated freeze-dried samples showed shorter process times than freeze-dried control samples without PEF + CO, where the treatment PEF at 2.0 kV cm-1 reached the shortest time. In addition, the abovementioned samples presented the best textural parameters but a low protein content. The thermal properties indicate a total denaturation of the proteins, where the amide I region presented greater mobility in the sample pretreated with an electric field of 2.0 kV cm-1. The assay for digestibility shows better hydrolysis for the 2.0 kV cm-1 PEF sample and has a higher Computer-Protein Efficiency Ratio (C-PER). Thereby, variations in thermal behavior and physicochemical parameters in comparison to combined PEF + CO pretreatments were observed. In addition, high protein quality and digestibility of pretreated freeze-dried Chilean abalones were maintained to the desired properties (texture and C-PER) and conditions (FD time).

3.
Foods ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138171

RESUMO

This study focused on applying different high hydrostatic pressure + carbon dioxide (HHP + CO2) processing conditions on refrigerated (4 °C, 25 days) farmed coho salmon (Oncorhynchus kisutch) to inactivate endogenous enzymes (protease, lipase, collagenase), physicochemical properties (texture, color, lipid oxidation), and microbial shelf life. Salmon fillets were subjected to combined HHP (150 MPa/5 min) and CO2 (50%, 70%, 100%). Protease and lipase inactivation was achieved with combined HHP + CO2 treatments in which lipase activity remained low as opposed to protease activity during storage. Collagenase activity decreased approximately 90% during storage when applying HHP + CO2. Combined treatments limited the increase in spoilage indicators, such as total volatile amines and trimethylamine. The 150 MPa + 100% CO2 treatment was the most effective at maintaining hardness after 10 days of storage. Combined treatments limited HHP-induced color change and reduced the extent of changes caused by storage compared with the untreated sample. Microbial shelf life was extended by the CO2 content and not by the HHP treatments; this result was related to an increased lag phase and decreased growth rate. It can be concluded that combining HHP and CO2 could be an effective method of inactivating endogenous enzymes and extend salmon shelf life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...