Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(7): 2027-2038, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36444139

RESUMO

Impatiens downy mildew (IDM) caused by Plasmopara destructor is currently the primary constraint on the production and use of impatiens (Impatiens walleriana) as bedding plants worldwide. Downy mildew has been documented since the 1880s from wild-grown Impatiens spp. but epidemic outbreaks of the disease affecting the commercially grown, ornamental I. walleriana were only reported for the first time in 2003 in the United Kingdom and in 2004 in the United States. Here, we assess the genetic diversity, level of differentiation, and population structure from 623 samples associated with current and preepidemic IDM outbreaks, by genotyping the samples with simple sequence repeat markers. P. destructor population structure following the emergence of IDM in the United States is subdivided into four genetic lineages characterized by high genetic diversity, mixed reproduction mode, inbreeding, and an excess of heterozygosity. P. destructor genotypes are significantly differentiated from preepidemic IDM samples from hosts other than I. walleriana but no geographical or temporal subdivision is evident. P. destructor samples from different Impatiens spp. show significant but very low levels of differentiation in the analysis of molecular variance test that did not hold in discriminant analysis of principal components analyses. The same was observed between samples of P. destructor and P. velutina recovered from I. walleriana. The finding of shared genotypes in samples from different countries and lack of differentiation among U.S. and Costa Rican samples indicate the occurrence of international movement of the pathogen. Our study provides the first high-resolution analysis of the diversity of P. destructor populations and the IDM epidemic that may be instrumental for disease management and breeding efforts.


Assuntos
Impatiens , Oomicetos , Peronospora , Estados Unidos/epidemiologia , Melhoramento Vegetal , Oomicetos/genética , Peronospora/genética , Genótipo
2.
Plant Dis ; 102(10): 1873-1882, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30110245

RESUMO

Peronospora sparsa is a downy mildew-causing oomycete that can infect roses, blackberries, and other members of the rose family. During the last 70 years, this disease has become a serious problem for rose growers in the U.S. and worldwide. While much is known about the disease and its treatment, including significant research on molecular identification methods, as well as environmental conditions conducive to disease and the fungicides used to prevent it, significant knowledge gaps remain in our basic comprehension of the pathogen's biology. For example, the degree of genetic relatedness of pathogen isolates collected from rose, caneberries, and cherry laurel has never been examined, and the natural movement of genotypes from host to host is not known. Further work could be done to determine the differences in pathogen population structure over time (using herbarium specimens and fresh collections) or differences in pathogen population structure and pathogen environmental adaptation for specimens from different geographic regions. The oospore stage of the organism is poorly understood, both as to how it forms and whether it serves as an overwintering structure in nurseries and landscapes. In production greenhouses, the detection of the pathogen using infrared thermographic imaging and possible inhibition by ultraviolet light needs to be explored. Further work needs to be done on breeding using wild roses as new sources for resistance and using new methods such as marker assisted selection and RNAi technologies. As roses are one of the most economically important ornamental crops worldwide, a proper understanding of the disease cycle could allow for better use of cultural and chemical controls to manage rose downy mildew in landscapes and in greenhouse and nursery production areas.


Assuntos
Peronospora/fisiologia , Doenças das Plantas/microbiologia , Rosa/microbiologia , Agricultura/economia , Fungicidas Industriais/uso terapêutico , Predisposição Genética para Doença , Peronospora/efeitos dos fármacos , Peronospora/genética , Doenças das Plantas/economia , Folhas de Planta , Rosa/genética , Estações do Ano
3.
Plant Methods ; 12: 37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27471544

RESUMO

BACKGROUND: Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. RESULTS: To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. CONCLUSIONS: This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

4.
Pest Manag Sci ; 70(10): 1573-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24464725

RESUMO

BACKGROUND: Bemisia tabaci, a polyphagous insect with over 900 host plants, is an effective vector of more than 100 plant viruses. Being highly fecund, B. tabaci has the potential to develop insecticide resistance rapidly, as demonstrated by reports of use failures with MEAM1 and MED cryptic species (commonly known as biotypes B and Q respectively). Insecticide resistance management is a key component of pest management practices. The research herein studied season-long rotational management programs on poinsettia and their impact on the ratio of MEAM1:MED cryptic species in the surviving treated populations. RESULTS: In all four experiments, only three of the treatments completely eliminated the adult or immature whiteflies, but all significantly reduced the populations. Out of 18 active ingredients tested, dinotefuran (applied as a soil drench) was the most efficacious against both MEAM1 and MED cryptic species compared with the other chemical or biorational insecticides evaluated. Reduced susceptibility of MED was reported against a variety of treatment regimes. CONCLUSION: Rotations can be used to manage MEAM1 and MED cryptic species and maintain a very low population level or completely eliminate Bemisia on poinsettia. It is imperative to continue to emphasize the importance of rotating among different modes of action in pest management programs in order to retain effective chemistries for as long as possible in the market place.


Assuntos
Hemípteros/efeitos dos fármacos , Hemípteros/genética , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Pragas/métodos , Animais , Euphorbia/parasitologia , Insetos Vetores/efeitos dos fármacos
5.
Plant Dis ; 81(12): 1432-1438, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30861798

RESUMO

Fungicide resistance in Botrytis cinerea has caused increased concerns about losses due to gray mold on many important agricultural and horticultural crops. Since bicarbonates have been reported to be an effective control of powdery mildew on greenhouse roses, the purpose of this research was to determine the effectiveness of bicarbonates against B. cinerea. Assessments were made of in vitro fungal colony growth in response to ammonium, potassium, and sodium bicarbonates. Bicarbonates inhibited colony growth at concentrations as low as 20 mM. In addition, comparisons of several ammonium, potassium, and sodium salts were conducted to determine whether cation or anion is the active moiety. Although the bicarbonate anion primarily affected growth, the ammonium cation also contributed greatly to fungal growth inhibition. With the exception of dibasic phosphate, only salts with high pKa values or that are reducing agents, or both, decreased colony growth. The effect of pH on B. cinerea was then examined. Since bicarbonate anion concentration is related to pH, this parameter was examined in combination with several salts to separate pH effects from bicarbonate effects. As pH increased from 7.0 to 8.5, colony growth decreased with bicarbonates and phosphates, but not with ammonium sulfate. Since bicarbonates and phosphates decreased colony growth more than could be accounted for from pH alone, and since both have buffering characteristics, buffering capacity was examined and found to decrease colony growth but not as much as bicarbonate. Therefore, bicarbonates control B. cinerea colony growth in vitro, and both pH and buffering capacity contribute to, but are not solely responsible for, growth inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...