Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 405: 110372, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37672942

RESUMO

The potential of using commercial peroxyacetic acid (PAA) for Vibrio parahaemolyticus sanitization was evaluated. Commercial PAA of 0.005 % (v/v, PAA: 2.24 mg/L, hydrogen peroxide: 11.79 mg/L) resulted in a planktonic cell reduction of >7.00 log10 CFU/mL when initial V. parahaemolyticus cells averaged 7.64 log10 CFU/mL. For cells on stainless steel coupons, treatment of 0.02 % PAA (v/v, PAA: 8.96 mg/L, hydrogen peroxide: 47.16 mg/L) achieved >5.00 log10 CFU/cm2 reductions in biofilm cells for eight strains but not for the two strongest biofilm formers. PAA of 0.05 % (v/v, PAA: 22.39 mg/L, hydrogen peroxide: 117.91 mg/L) was required to inactivate >5.00 log10 CFU/cm2 biofilm cells from mussel shell surfaces. The detection of PAA residues after biofilm treatment demonstrated that higher biofilm production resulted in higher PAA residues (p < 0.05), suggesting biofilm is acting as a barrier interfering with PAA diffusing into the matrices. Based on the comparative analysis of genomes, robust biofilm formation and metabolic heterogeneity within niches might have contributed to the variations in PAA resistance of V. parahaemolyticus biofilms.


Assuntos
Perna (Organismo) , Vibrio parahaemolyticus , Animais , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Aço Inoxidável , Biofilmes , Plâncton
2.
Food Res Int ; 166: 112605, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914349

RESUMO

Vibrio parahaemolyticus biofilms on the seafood processing plant surfaces are a potential source of seafood contamination and subsequent food poisoning. Strains differ in their ability to form biofilm, but little is known about the genetic characteristics responsible for biofilm development. In this study, pangenome and comparative genome analysis of V. parahaemolyticus strains reveals genetic attributes and gene repertoire that contribute to robust biofilm formation. The study identified 136 accessory genes that were exclusively present in strong biofilm forming strains and these were functionally assigned to the Gene Ontology (GO) pathways of cellulose biosynthesis, rhamnose metabolic and catabolic processes, UDP-glucose processes and O antigen biosynthesis (p < 0.05). Strategies of CRISPR-Cas defence and MSHA pilus-led attachment were implicated via Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Higher levels of horizontal gene transfer (HGT) were inferred to confer more putatively novel properties on biofilm-forming V. parahaemolyticus. Furthermore, cellulose biosynthesis, a neglected potential virulence factor, was identified as being acquired from within the order Vibrionales. The cellulose synthase operons in V. parahaemolyticus were examined for their prevalence (22/138, 15.94 %) and were found to consist of the genes bcsG, bcsE, bcsQ, bcsA, bcsB, bcsZ, bcsC. This study provides insights into robust biofilm formation of V. parahaemolyticus at the genomic level and facilitates: identification of key attributes for robust biofilm formation, elucidation of biofilm formation mechanisms and development of potential targets for novel control strategies of persistent V. parahaemolyticus.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Biofilmes , Genômica , Óperon , Celulose
3.
Int J Food Microbiol ; 385: 110011, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36370527

RESUMO

Vibrio parahaemolyticus is a marine oriented pathogen; and biofilm formation enables its survival and persistence on seafood processing plant, complicating the hygienic practice. The objectives of this study are to assess the ability of V. parahaemolyticus isolated from seafood related environments to form biofilms, to determine the effective sodium hypochlorite concentrations required to inactivate planktonic and biofilm cells, and to evaluate the genetic diversity required for strong biofilm formation. Among nine isolates, PFR30J09 and PFR34B02 isolates were identified as strong biofilm forming strains, with biofilm cell counts of 7.20, 7.08 log10 CFU/cm2, respectively, on stainless steel coupons after incubation at 25 °C. Free available chlorine of 1176 mg/L and 4704 mg/L was required to eliminate biofilm cells of 1.74-2.28 log10 CFU/cm2 and > 7 log10 CFU/cm2, respectively, whereas 63 mg/L for planktonic cells, indicating the ineffectiveness of sodium hypochlorite in eliminating V. parahaemolyticus biofilm cells at recommended concentration in the food industry. These strong biofilm-forming isolates produced more polysaccharides and were less susceptible to sodium hypochlorite, implying a possible correlation between polysaccharide production and sodium hypochlorite susceptibility. Genetic diversity in mshA, mshC and mshD contributed to the observed variation in biofilm formation between isolates. This study identified strong biofilm-forming V. parahaemolyticus strains of new multilocus sequence typing (MLST) types, showed a relationship between polysaccharide production and sodium hypochlorite resistance.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Hipoclorito de Sódio/farmacologia , Tipagem de Sequências Multilocus , Biofilmes , Variação Genética
4.
Biofouling ; 37(6): 680-688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369215

RESUMO

The formation of biofilms is a survival strategy employed by bacteria to help protect them from changing or unfavourable environments. In this research, 319 genes which govern biofilm formation in V. parahaemolyticus, as reported in 1,625 publications, were analysed using protein-protein-interaction (PPI) network analysis. CsrA was identified as a motility-sessility switch and biofilm formation regulator. Through robust rank aggregation (RRA) analysis of GSE65340, the generation of viable but non-culturable (VBNC) cells that may enhance cell tolerance to stress, was found to be associated with the TCA cycle and carbon metabolism biological pathways. The finding that CsrA is likely to play a role in the development of VBNC cells improves understanding of the molecular mechanisms of VBNC formation in V. parahaemolyticus and contributes to on-going efforts to reduce the hazard posed by this foodborne pathogen.


Assuntos
Vibrio parahaemolyticus , Bactérias , Biofilmes , Simulação por Computador
5.
Food Microbiol ; 90: 103493, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336372

RESUMO

Bacillus cereus is a well-known foodborne pathogen capable of causing two types of gastrointestinal diseases, diarrhoea and emesis. It is of particular concern for the food industry causing food safety issues, due to the formation of spores, biofilms and diarrhoea and/or emetic toxins. This review reveals the possible link between two food safety issues - toxins and spores - and the role of biofilms. The review highlights genetic determinants that are involved in sporulation, toxin production and biofilm formation based on current research, and evidence showing the possible correlation of spore, toxin and biofilm formation of B. cereus. This is the first review highlighting the potential relationship between toxin production and biofilm formation in B. cereus.


Assuntos
Bacillus cereus/fisiologia , Toxinas Bacterianas/biossíntese , Biofilmes/crescimento & desenvolvimento , Inocuidade dos Alimentos , Esporos Bacterianos/fisiologia , Bacillus cereus/genética , Contagem de Colônia Microbiana , Contaminação de Alimentos , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...