Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Microbiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890478

RESUMO

The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.

2.
Sci Adv ; 10(22): eadn7848, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809989

RESUMO

Streptococcus agalactiae [group B Streptococcus (GBS)] is a leading cause of neonatal meningitis, with late-onset disease (LOD) occurring after gastrointestinal tract colonization in infants. Bacterial membrane lipids are essential for host-pathogen interactions, and the functions of glycolipids are yet to be fully elucidated. GBS synthesizes three major glycolipids: glucosyl-diacylglycerol (Glc-DAG), diglucosyl-DAG (Glc2-DAG), and lysyl-Glc-DAG (Lys-Glc-DAG). Here, we identify the enzyme, IagB, as responsible for biosynthesis of Glc-DAG, the precursor for the two other glycolipids in GBS. To examine the collective role of glycolipids to GBS virulence, we adapted a murine model of neonatal meningitis to simulate LOD. The GBS∆iagB mutant traversed the gut-epithelial barrier comparable to wild type but was severely attenuated in bloodstream survival, resulting in decreased bacterial loads in the brain. The GBS∆iagB mutant was more susceptible to neutrophil killing and membrane targeting by host antimicrobial peptides. This work reveals an unexplored function of GBS glycolipids with their ability to protect the bacterial cell from host antimicrobial killing.


Assuntos
Glicolipídeos , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/metabolismo , Animais , Glicolipídeos/metabolismo , Glicolipídeos/imunologia , Camundongos , Virulência , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Humanos , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Mutação
5.
Microbiol Resour Announc ; 13(1): e0035723, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38038466

RESUMO

Soil is a source for diverse microbes that possess useful biotechnological capabilities. Here, we report the genome sequences of seven bacterial isolates from the species Exiguobacterium acetylicum, Rossellomorea marisflavi, Delftia acidovorans, Pseudomonas aeruginosa, Bacillus sp., and Bacillus toyonensis (two isolates) cultured from Dallas/Fort Worth metroplex soil samples.

6.
mBio ; : e0251523, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962362

RESUMO

IMPORTANCE: Urinary tract infection (UTI) is a global health issue that imposes a substantial burden on healthcare systems. Women are disproportionately affected by UTI, with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis, a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may be involved in E. faecalis survival in the urinary tract.

7.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37873101

RESUMO

Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus , diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.

8.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808752

RESUMO

The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system CRISPR-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its anti-plasmid efficacy in an agricultural niche - manure. We show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. CRISPR-Cas was found to be an effective barrier against resistance plasmid transfer in manure, with improved effect as time progressed. CRISPR-based antimicrobials to cure resistant E. faecalis of erythromycin resistance was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting, and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a OneHealth approach.

9.
Access Microbiol ; 5(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424546

RESUMO

Enterococcus raffinosus is an understudied member of its genus possessing a characteristic megaplasmid contributing to a large genome size. Although less commonly associated with human infection compared to other enterococci, this species can cause disease and persist in diverse niches such as the gut, urinary tract, blood and environment. Few complete genome assemblies have been published to date for E. raffinosus . In this study, we report the complete assembly of the first clinical urinary E. raffinosus strain, Er676, isolated from a postmenopausal woman with history of recurrent urinary tract infection. We additionally completed the assembly of clinical type strain ATCC49464. Comparative genomic analyses reveal inter-species diversity driven by large accessory genomes. The presence of a conserved megaplasmid indicates it is a ubiquitous and vital genetic feature of E. raffinosus . We find that the E. raffinosus chromosome is enriched for DNA replication and protein biosynthesis genes while the megaplasmid is enriched for transcription and carbohydrate metabolism genes. Prophage analysis suggests that diversity in the chromosome and megaplasmid sequences arises, in part, from horizontal gene transfer. Er676 demonstrated the largest genome size reported to date for E. raffinosus and the highest probability of human pathogenicity. Er676 also possesses multiple antimicrobial resistance genes, of which all but one are encoded on the chromosome, and has the most complete prophage sequences. Complete assembly and comparative analyses of the Er676 and ATCC49464 genomes provide important insight into the inter-species diversity of E. raffinosus that gives it its ability to colonize and persist in the human body. Investigating genetic factors that contribute to the pathogenicity of this species will provide valuable tools to combat diseases caused by this opportunistic pathogen.

10.
Nat Commun ; 14(1): 4130, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438331

RESUMO

Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.


Assuntos
Clostridioides difficile , Nitroimidazóis , Metronidazol/farmacologia , Clostridioides difficile/genética , Fluoroquinolonas/farmacologia , Nitroimidazóis/farmacologia , Clostridioides , Heme , Pandemias
11.
Appl Environ Microbiol ; 89(6): e0012423, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278656

RESUMO

Enterococcus faecalis is a Gram-positive bacterium that natively colonizes the human gastrointestinal tract and opportunistically causes life-threatening infections. Multidrug-resistant (MDR) E. faecalis strains have emerged that are replete with mobile genetic elements (MGEs). Non-MDR E. faecalis strains frequently possess CRISPR-Cas systems, which reduce the frequency of MGE acquisition. We demonstrated in previous studies that E. faecalis populations can transiently maintain both a functional CRISPR-Cas system and a CRISPR-Cas target. In this study, we used serial passage and deep sequencing to analyze these populations. In the presence of antibiotic selection for the plasmid, mutants with compromised CRISPR-Cas defense and enhanced ability to acquire a second antibiotic resistance plasmid emerged. Conversely, in the absence of selection, the plasmid was lost from wild-type E. faecalis populations but not E. faecalis populations that lacked the cas9 gene. Our results indicate that E. faecalis CRISPR-Cas can become compromised under antibiotic selection, generating populations with enhanced abilities to undergo horizontal gene transfer. IMPORTANCE Enterococcus faecalis is a leading cause of hospital-acquired infections and disseminator of antibiotic resistance plasmids among Gram-positive bacteria. We have previously shown that E. faecalis strains with an active CRISPR-Cas system can prevent plasmid acquisition and thus limit the transmission of antibiotic resistance determinants. However, CRISPR-Cas is not a perfect barrier. In this study, we observed populations of E. faecalis with transient coexistence of CRISPR-Cas and one of its plasmid targets. Our experimental data demonstrate that antibiotic selection results in compromised E. faecalis CRISPR-Cas function, thereby facilitating the acquisition of additional resistance plasmids by E. faecalis.


Assuntos
Antibacterianos , Sistemas CRISPR-Cas , Humanos , Antibacterianos/farmacologia , Enterococcus faecalis/genética , Plasmídeos/genética , Trato Gastrointestinal
12.
PLoS Pathog ; 19(6): e1011424, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37267422

RESUMO

Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis, indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health.


Assuntos
Enterococcus faecium , Enterococcus , Humanos , Enterococcus/genética , Elementos de DNA Transponíveis/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Enterococcus faecalis/genética
13.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37293065

RESUMO

Enterococcus faecalis is the leading Gram-positive bacterial species implicated in urinary tract infection (UTI). An opportunistic pathogen, E. faecalis is a commensal of the human gastrointestinal tract (GIT) and its presence in the GIT is a predisposing factor for UTI. The mechanisms by which E. faecalis colonizes and survives in the urinary tract (UT) are poorly understood, especially in uncomplicated or recurrent UTI. The UT is distinct from the GIT and is characterized by a sparse nutrient landscape and unique environmental stressors. In this study, we isolated and sequenced a collection of 37 clinical E. faecalis strains from the urine of primarily postmenopausal women. We generated 33 closed genome assemblies and four highly contiguous draft assemblies and conducted a comparative genomics to identify genetic features enriched in urinary E. faecalis with respect to E. faecalis isolated from the human GIT and blood. Phylogenetic analysis revealed high diversity among urinary strains and a closer relatedness between urine and gut isolates than blood isolates. Plasmid replicon (rep) typing further underscored possible UT-GIT interconnection identifying nine shared rep types between urine and gut E. faecalis . Both genotypic and phenotypic analysis of antimicrobial resistance among urinary E. faecalis revealed infrequent resistance to front-line UTI antibiotics nitrofurantoin and fluoroquinolones and no vancomycin resistance. Finally, we identified 19 candidate genes enriched among urinary strains that may play a role in adaptation to the UT. These genes are involved in the core processes of sugar transport, cobalamin import, glucose metabolism, and post-transcriptional regulation of gene expression. IMPORTANCE: Urinary tract infection (UTI) is a global health issue that imposes substantial burden on healthcare systems. Women are disproportionately affected by UTI with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis , a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may mediate urinary E. faecalis adaptation to the female urinary tract.

14.
Microbiol Spectr ; 11(3): e0512922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37014220

RESUMO

Streptococcus mitis is a normal member of the human oral microbiota and a leading opportunistic pathogen causing infective endocarditis (IE). Despite the complex interactions between S. mitis and the human host, understanding of S. mitis physiology and its mechanisms of adaptation to host-associated environments is inadequate, especially compared with other IE bacterial pathogens. This study reports the growth-promoting effects of human serum on S. mitis and other pathogenic streptococci, including S. oralis, S. pneumoniae, and S. agalactiae. Using transcriptomic analyses, we identified that, with the addition of human serum, S. mitis downregulates uptake systems for metal ions and sugars, fatty acid biosynthetic genes, and genes involved in stress response and other processes related with growth and replication. S. mitis upregulates uptake systems for amino acids and short peptides in response to human serum. Zinc availability and environmental signals sensed by the induced short peptide binding proteins were not sufficient to confer the growth-promoting effects. More investigation is required to establish the mechanism for growth promotion. Overall, our study contributes to the fundamental understanding of S. mitis physiology under host-associated conditions. IMPORTANCE S. mitis is exposed to human serum components during commensalism in the human mouth and bloodstream pathogenesis. However, the physiological effects of serum components on this bacterium remain unclear. Using transcriptomic analyses, S. mitis biological processes that respond to the presence of human serum were revealed, improving the fundamental understanding of S. mitis physiology in human host conditions.


Assuntos
Fenômenos Biológicos , Endocardite , Humanos , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Transcriptoma , Streptococcus/genética , Streptococcus pneumoniae/genética , Endocardite/microbiologia , Suplementos Nutricionais
15.
mSphere ; 8(2): e0002423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939336

RESUMO

Vancomycin-resistant E. faecium (VREfm) is a significant public health concern because of limited treatment options. Genomic surveillance can be used to monitor VREfm transmission and evolution. Genomic analysis of VREfm has not been reported for the Dallas/Fort Worth/Arlington, TX, area, which is currently the 4th largest metropolitan area in the United States. Our study aimed to address this gap in knowledge by analyzing the genomes of 46 VREfm strains and 1 vancomycin-sensitive comparator collected during routine fecal surveillance of high-risk patients upon admission to a Dallas, TX, hospital system (August to October 2015). Thirty-one complete and 16 draft genome sequences were generated. The closed VREfm genomes possessed up to 12 extrachromosomal elements each. Overall, 251 closed putative plasmid sequences assigned to previously described and newly defined rep family types were obtained. Phylogenetic analysis identified 10 different sequence types (STs) among the isolates, with the most prevalent being ST17 and ST18. Strikingly, all but three of the VREfm isolates encoded vanA-type vancomycin resistance within Tn1546-like elements on a pRUM-like (rep17) plasmid backbone. Relative to a previously reported typing scheme for the vanA-carrying Tn1546, new variants of the Tn1546 were identified that harbored a combination of 7 insertion sequences (IS), including 3 novel IS elements reported here (ISEfa16, ISEfa17, and ISEfa18). We conclude that pRUM-like plasmids are important vectors for vancomycin resistance in the Dallas, TX, area and should be a focus of plasmid surveillance efforts. IMPORTANCE Vancomycin is an antibiotic used to treat infections caused by multidrug-resistant Gram-positive bacteria. Vancomycin resistance is common in clinical isolates of the Gram-positive pathogen Enterococcus faecium. Among E. faecium strains, vancomycin resistance genes can be disseminated by plasmids with different host ranges and transfer efficiencies. Surveillance of resistance plasmids is critical to understanding antibiotic resistance transmission. This study analyzed the genome sequences of VREfm isolates collected from the Dallas, TX, area, with particular focus on the mobile elements associated with vancomycin resistance genes. We found that a single plasmid family, the pRUM-like family, was associated with vancomycin resistance in the majority of isolates sampled. Our work suggests that the pRUM-like plasmids should continue to be studied to understand their mechanisms of maintenance, transmission, and evolution in VREfm.


Assuntos
Enterococcus faecium , Resistência a Vancomicina , Humanos , Estados Unidos , Resistência a Vancomicina/genética , Enterococcus faecium/genética , Vancomicina/farmacologia , Texas , Filogenia , Plasmídeos/genética , Elementos de DNA Transponíveis
16.
Mar Life Sci Technol ; 5(1): 28-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744155

RESUMO

The emergence of antibiotic resistance in bacteria limits the availability of antibiotic choices for treatment and infection control, thereby representing a major threat to human health. The de novo mutation of bacterial genomes is an essential mechanism by which bacteria acquire antibiotic resistance. Previously, deletion mutations within bacterial immune systems, ranging from dozens to thousands of base pairs (bps) in length, have been associated with the spread of antibiotic resistance. Most current methods for evaluating genomic structural variations (SVs) have concentrated on detecting them, rather than estimating the proportions of populations that carry distinct SVs. A better understanding of the distribution of mutations and subpopulations dynamics in bacterial populations is needed to appreciate antibiotic resistance evolution and movement of resistance genes through populations. Here, we propose a statistical model to estimate the proportions of genomic deletions in a mixed population based on Expectation-Maximization (EM) algorithms and next-generation sequencing (NGS) data. The method integrates both insert size and split-read mapping information to iteratively update estimated distributions. The proposed method was evaluated with three simulations that demonstrated the production of accurate estimations. The proposed method was then applied to investigate the horizontal transfers of antibiotic resistance genes in concert with changes in the CRISPR-Cas system of E. faecalis. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00144-z.

17.
mSphere ; 7(6): e0050922, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36321824

RESUMO

The viridans group streptococci (VGS) are a large consortium of commensal streptococci that colonize the human body. Many species within this group are opportunistic pathogens causing bacteremia and infective endocarditis (IE), yet little is known about why some strains cause invasive disease. Identification of virulence determinants is complicated by the difficulty of distinguishing between the closely related species of this group. Here, we analyzed genomic data from VGS that were isolated from blood cultures in patients with invasive infections and oral swabs of healthy volunteers and then determined the best-performing methods for species identification. Using whole-genome sequence data, we characterized the population structure of a diverse sample of Streptococcus oralis isolates and found evidence of frequent recombination. We used multiple genome-wide association study tools to identify candidate determinants of invasiveness. These tools gave consistent results, leading to the discovery of a single synonymous single nucleotide polymorphism (SNP) that was significantly associated with invasiveness. This SNP was within a previously undescribed gene that was conserved across the majority of VGS species. Using the growth in the presence of human serum and a simulated infective endocarditis vegetation model, we were unable to identify a phenotype for the enriched allele in laboratory assays, suggesting a phenotype may be specific to natural infection. These data highlighted the power of analyzing natural populations for gaining insight into pathogenicity, particularly for organisms with complex population structures like the VGS. IMPORTANCE The viridians group streptococci (VGS) are a large collection of closely related commensal streptococci, with many being opportunistic pathogens causing invasive diseases, such as bacteremia and infective endocarditis. Little is known about virulence determinants in these species, and there is a distinct lack of genomic information available for the VGS. In this study, we collected VGS isolates from invasive infections and healthy volunteers and performed whole-genome sequencing for a suite of downstream analyses. We focused on a diverse sample of Streptococcus oralis genomes and identified high rates of recombination in the population as well as a single genome variant highly enriched in invasive isolates. The variant lies within a previously uncharacterized gene, nrdM, which shared homology with the anaerobic ribonucleoside triphosphate reductase, nrdD, and was highly conserved among VGS. This work increased our knowledge of VGS genomics and indicated that differences in virulence potential among S. oralis isolates were, at least in part, genetically determined.


Assuntos
Bacteriemia , Endocardite , Humanos , Streptococcus oralis/genética , Estudo de Associação Genômica Ampla , Streptococcus/genética , Estreptococos Viridans/genética , Genômica , Fatores de Virulência/genética
18.
Cell Rep Med ; 3(10): 100753, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36182683

RESUMO

Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital microbiome is a key component of the urinary environment. However, changes in the urogenital microbiome underlying rUTI susceptibility are unknown. Here, we perform shotgun metagenomics and advanced culture on urine from a controlled cohort of postmenopausal women to identify urogenital microbiome compositional and function changes linked to rUTI susceptibility. We identify candidate taxonomic biomarkers of rUTI susceptibility in postmenopausal women and an enrichment of lactobacilli in postmenopausal women taking estrogen hormone therapy. We find robust correlations between Bifidobacterium and Lactobacillus and urinary estrogens in women without urinary tract infection (UTI) history. Functional analyses reveal distinct metabolic and antimicrobial resistance gene (ARG) signatures associated with rUTI. Importantly, we find that ARGs are enriched in the urogenital microbiomes of women with rUTI history independent of current UTI status. Our data suggest that rUTI and estrogen shape the urogenital microbiome in postmenopausal women.


Assuntos
Anti-Infecciosos , Microbiota , Infecções Urinárias , Feminino , Humanos , Pós-Menopausa , Infecções Urinárias/tratamento farmacológico , Estrogênios , Microbiota/genética , Lactobacillus
19.
Microbiologyopen ; 11(2): e1273, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478284

RESUMO

The human microbiota harbors diverse bacterial and bacteriophage (phage) communities. Bacteria evolve to overcome phage infection, thereby driving phage evolution to counter bacterial resistance. Understanding how phages select for genetic alterations in medically relevant bacteria is important as phages become established biologics for the treatment of multidrug-resistant (MDR) bacterial infections. Before phages can be widely used as standalone or combination antibacterial therapies, we must obtain a deep understanding of the molecular mechanisms of phage infection and how host bacteria alter their genomes to become resistant. We performed coevolution experiments using a single Enterococcus faecalis strain and two distantly related phages to determine how phage pressure impacts the evolution of the E. faecalis genome. Whole-genome sequencing of E. faecalis following continuous exposure to these two phages revealed mutations previously demonstrated to be essential for phage infection. We also identified mutations in genes previously unreported to be associated with phage infection in E. faecalis. Intriguingly, there was only one shared mutation in the E. faecalis genome that was selected by both phages tested, demonstrating that infection by two genetically distinct phages selects for diverse variants. This knowledge serves as the basis for the continued study of E. faecalis genome evolution during phage infection and can be used to inform the design of future therapeutics, such as phage cocktails, intended to target MDR E. faecalis.


Assuntos
Bacteriófagos , Enterococcus faecalis , Antibacterianos , Bacteriófagos/genética , Enterococcus faecalis/genética , Genoma Viral , Genômica , Humanos
20.
PLoS Biol ; 20(2): e3001555, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180210

RESUMO

Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood-brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔmprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host-pathogen interface.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Glicolipídeos/metabolismo , Meningite/metabolismo , Streptococcus agalactiae/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Cátions/química , Cromatografia Líquida/métodos , Glicolipídeos/química , Humanos , Masculino , Camundongos , Mutação , Espectrometria de Massas por Ionização por Electrospray/métodos , Streptococcus agalactiae/genética , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...