Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236087

RESUMO

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

2.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586918

RESUMO

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

3.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243269

RESUMO

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

4.
Rev Sci Instrum ; 92(4): 044708, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243427

RESUMO

We describe a method of analyzing gate profile data for ultrafast x-ray imagers that allows pixel-by-pixel determination of temporal sensitivity in the presence of substantial background oscillations. With this method, systematic timing errors in gate width and gate arrival time of up to 1 ns (in a 2 ns wide gate) can be removed. In-sensor variations in gate arrival and gate width are observed, with variations in each up to 0.5 ns. This method can be used to estimate the coarse timing of the sensor, even if errors up to several ns are present.

5.
Rev Sci Instrum ; 87(11): 11E310, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910309

RESUMO

Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

6.
Rev Sci Instrum ; 87(11): 11E202, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910532

RESUMO

We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

7.
Rev Sci Instrum ; 85(11): 11D501, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430175

RESUMO

In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic-a multichannel, hard x-ray spectrometer operating in the 20-500 keV range-has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ∼300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U Kß). The detectors impulse response function was measured in situ on NIF short-pulse (∼90 ps) experiments, and in off-line tests.

8.
Rev Sci Instrum ; 85(11): 11D623, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430199

RESUMO

Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., "AXIS: An instrument for imaging Compton radiographs using ARC on the NIF," Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

9.
Rev Sci Instrum ; 85(11): 11D624, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430200

RESUMO

Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

10.
Fresenius J Anal Chem ; 371(7): 951-4, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11769806

RESUMO

Dynamic light scattering (DLS) has been used to monitor changes in aggregate sizes of aqueous humic materials as a function of solution properties. Humic and fulvic acids were dissolved at relatively low concentrations (15-30 mg L(-1)) in solutions of different temperature, cation and ethanol content, and pH. The results could be explained in terms of intramolecular contraction and intermolecular aggregation of humic polymers. The former were prevalent in soil humic acids, and less so in aquatic humic acids and fulvic acids. Increasing the temperature of humic solutions generally led to an increase in particle sizes, which was ascribed to an effect akin to surfactant clouding. The addition of cations led to either contraction or expansion, depending on the charge and concentration of the ion, and the nature of the humic material. Reducing the pH initially caused contraction, followed by growth and precipitation in more highly acidic media.


Assuntos
Substâncias Húmicas/química , Benzopiranos/química , Cátions/farmacologia , Precipitação Química , Concentração de Íons de Hidrogênio , Luz , Concentração Osmolar , Tamanho da Partícula , Espalhamento de Radiação , Soluções , Temperatura , Água
11.
Vet Rec ; 125(1): 24, 1989 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-2781691
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...