Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551642

RESUMO

The risk of misclassifying clinically significant prostate cancer (csPCa) by multiparametric magnetic resonance imaging is consistent, also using the updated PIRADS score and although different definitions of csPCa, patients with Gleason Grade group (GG) ≥ 3 have a significantly worse prognosis. This study aims to develop a machine learning model predicting csPCa (i.e., any GG ≥ 3 lesion at target biopsy) by mpMRI radiomic features and analyzing similarities between GG groups. One hundred and two patients with 117 PIRADS ≥ 3 lesions at mpMRI underwent target+systematic biopsy, providing histologic diagnosis of PCa, 61 GG < 3 and 56 GG ≥ 3. Features were generated locally from an apparent diffusion coefficient and selected, using the LASSO method and Wilcoxon rank-sum test (p < 0.001), to achieve only four features. After data augmentation, the features were exploited to train a support vector machine classifier, subsequently validated on a test set. To assess the results, Kruskal−Wallis and Wilcoxon rank-sum tests (p < 0.001) and receiver operating characteristic (ROC)-related metrics were used. GG1 and GG2 were equivalent (p = 0.26), whilst clear separations between either GG[1,2] and GG ≥ 3 exist (p < 10−6). On the test set, the area under the curve = 0.88 (95% CI, 0.68−0.94), with positive and negative predictive values being 84%. The features retain a histological interpretation. Our model hints at GG2 being much more similar to GG1 than GG ≥ 3.

2.
Molecules ; 27(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36014562

RESUMO

There is substantial evidence in the literature that patients with cystic fibrosis (CF) have higher oxidative stress than patients with other diseases or healthy subjects. This results in an increase in reactive oxygen species (ROS) and in a deficit of antioxidant molecules and plays a fundamental role in the progression of chronic lung damage. Although it is known that recurrent infection-inflammation cycles in CF patients generate a highly oxidative environment, numerous clinical and preclinical studies suggest that the airways of a patient with CF present an inherently abnormal proinflammatory milieu due to elevated oxidative stress and abnormal lipid metabolism even before they become infected. This could be directly related to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency, which appears to produce a redox imbalance in epithelial cells and extracellular fluids. This review aims to summarize the main mechanism by which CFTR deficiency is intrinsically responsible for the proinflammatory environment that characterizes the lung of a patient with CF.


Assuntos
Fibrose Cística , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...