Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Sci ; 24(2): e13046, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33035404

RESUMO

While the brain network supporting handwriting has previously been defined in adults, its organization in children has never been investigated. We compared the handwriting network of 23 adults and 42 children (8- to 11-year-old). Participants were instructed to write the alphabet, the days of the week, and to draw loops while being scanned. The handwriting network previously described in adults (five key regions: left dorsal premotor cortex, superior parietal lobule (SPL), fusiform and inferior frontal gyri, and right cerebellum) was also strongly activated in children. The right precentral gyrus and the right anterior cerebellum were more strongly activated in adults than in children, while the left fusiform gyrus (FuG) was more strongly activated in children than in adults. Finally, we found that, contrary to adults, children recruited prefrontal regions to complete the writing task. This constitutes the first comparative investigation of the neural correlates of writing in children and adults. Our results suggest that the network supporting handwriting is already established in middle childhood. They also highlight the major role of prefrontal regions in learning this complex skill and the importance of right precentral regions and cerebellum in the performance of automated handwriting.


Assuntos
Mapeamento Encefálico , Córtex Motor , Adulto , Encéfalo , Criança , Escrita Manual , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal
2.
Cortex ; 113: 111-127, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30640140

RESUMO

Current models of writing assume that the orthographic processes involved in spelling retrieval and the motor processes involved in the control of the hand are independent. This view has been challenged by behavioral studies, which showed that the linguistic features of words impact motor execution during handwriting. We designed an experiment coupling functional magnetic resonance imaging and kinematic recordings during a writing to dictation task. Participants wrote orthographically regular and irregular words. The presence of an irregularity impacts both the initiation of the movement and its fine motor execution. At the brain level, the left inferior frontal and fusiform gyri, two regions belonging to the core of the written language system, were found to be sensitive to the presence of an irregularity and to its position in the word during writing execution. Moreover, the left superior parietal lobule, the left superior frontal gyrus and the right cerebellum, three motor-related regions, displayed a stronger response to irregular than regular words. These results constitute direct evidence that orthographic and motor processes occur in a continuous and interactive fashion during writing.


Assuntos
Encéfalo/diagnóstico por imagem , Escrita Manual , Idioma , Adulto , Fenômenos Biomecânicos/fisiologia , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
3.
Cogn Neuropsychol ; 34(3-4): 187-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28891745

RESUMO

This review focuses on the acquisition of writing motor aspects in adults, and in 5-to 12-year-old children without learning disabilities. We first describe the behavioural aspects of adult writing and dominant models based on the notion of motor programs. We show that handwriting acquisition is characterized by the transition from reactive movements programmed stroke-by-stroke in younger children, to an automatic control of the whole trajectory when the motor programs are memorized at about 10 years old. Then, we describe the neural correlates of adult writing, and the changes that could occur with learning during childhood. The acquisition of a new skill is characterized by the involvement of a network more restricted in space and where neural specificity is increased in key regions. The cerebellum and the left dorsal premotor cortex are of fundamental importance in motor learning, and could be at the core of the acquisition of handwriting.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Desenvolvimento Infantil , Mãos/fisiologia , Escrita Manual , Destreza Motora/fisiologia , Movimento/fisiologia , Criança , Humanos , Aprendizagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...