Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786204

RESUMO

Water pollution by organic dyes represents a major health and environmental issue. Despite the fact that peptide-based hydrogels are considered to be optimal absorbents for removing such contaminants, hydrogel systems often suffer from a lack of mechanical stability and complex recovery. Recently, we developed an enzymatic approach for the preparation of a new peptide-based magnetogel containing polyacrylic acid-modified γ-Fe2O3 nanoparticles (γ-Fe2O3NPs) that showed the promising ability to remove cationic metal ions from aqueous phases. In the present work, we tested the ability of the magnetogel formulation to remove three model organic dyes: methyl orange, methylene blue, and rhodamine 6G. Three different hydrogel-based systems were studied, including: (1) Fmoc-Phe3 hydrogel; (2) γ-Fe2O3NPs dispersed in the peptide-based gel (Fe2O3NPs@gel); and (3) Fe2O3NPs@gel with the application of a magnetic field. The removal efficiencies of such adsorbents were evaluated using two different experimental set-ups, by placing the hydrogel sample inside cuvettes or, alternatively, by placing them inside syringes. The obtained peptide magnetogel formulation could represent a valuable and environmentally friendly alternative to currently employed adsorbents.

2.
Gels ; 10(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667703

RESUMO

Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.

3.
Polymers (Basel) ; 16(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611206

RESUMO

Ensuring the longevity of wooden constructions depends heavily on the preservation process. However, several traditional preservation methods involving fossil-based compounds have become outdated because they pose a significant risk to the environment and to human health. Therefore, the use of bio-based and bioactive solutions, such as essential oils, has emerged as a more sustainable alternative in protecting wood from biotic attacks. The entrapment of essential oils in polymeric carrier matrices provides protection against oxidation and subsequent degradation or rapid evaporation, which implies the loss of their biocidal effect. In this work, lignin as well as PLGA nanoparticles containing the essential oils from two different thyme species (Thymus capitatus and T. vulgaris) were applied on beech wood samples using spray coating. The prepared coatings were investigated using FTIR imaging, SEM, as well as LSM analysis. Release experiments were conducted to investigate the release behavior of the essential oils from their respective lignin and PLGA carrier materials. The study found that lignin nanoparticles were more effective at trapping and retaining essential oils than PLGA nanoparticles, despite having larger average particle diameters and a more uneven particle size distribution. An analysis of the lignin coatings showed that they formed a uniform layer that covered most of the surface pores. PLGA nanoparticles formed a film-like layer on the cell walls, and after leaching, larger areas of native wood were evident on the wood samples treated with PLGA NPs compared to the ones coated with lignin NPs. The loading capacity and efficiency varied with the type of essential oil, while the release behaviors were similar between the two essential oil types applied in this study.

4.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990493

RESUMO

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , MicroRNAs/farmacologia
5.
Gels ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38131926

RESUMO

The photoantibacterial properties of titania nanoparticles (TiO2NPs) are attracting much interest, but the separation of their suspension limits their application. In this study, the encapsulation of commercial TiO2NPs within self-assembling tripeptide hydrogels to form hgel-TiO2NP composites with significant photoantibacterial properties is reported. The Fmoc-Phe3 hydrogelator was synthesized via an enzymatic method. The resulting composite was characterized with DLS, ζ-potential, SAXS, FESEM-EDS and rheological measurements. Two different concentrations of TiO2NPs were used. The results showed that, by increasing the TiO2NP quantity from 5 to 10 mg, the value of the elastic modulus doubled, while the swelling ratio decreased from 63.6 to 45.5%. The antimicrobial efficacy of hgel-TiO2NPs was tested against a laboratory Staphylococcus aureus (S. aureus) strain and two methicillin-resistant S. aureus (MRSA) clinical isolates. Results highlighted a concentration-dependent superior antibacterial activity of hgel-TiO2NPs over TiO2NPs in the dark and after UV photoactivation. Notably, UV light exposure substantially increased the biocidal action of hgel-TiO2NPs compared to TiO2NPs. Surprisingly, in the absence of UV light, both composites significantly increased S. aureus growth relative to control groups. These findings support the role of hgel-TiO2NPs as promising biocidal agents in clinical and sanitation contexts. However, they also signal concerns about TiO2NP exposure influencing S. aureus virulence.

6.
Gels ; 9(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38131939

RESUMO

Cancer is the second leading cause of death globally, but conventional anticancer drugs have side effects, mainly due to their non-specific distribution in the body in both cancerous and healthy cells. To address this relevant issue and improve the efficiency of anticancer drugs, increasing attention is being devoted to hydrogel drug-delivery systems for different kinds of cancer treatment due to their high biocompatibility and stability, low side effects, and ease of modifications. To improve the therapeutic efficiency and provide multi-functionality, different types of nanoparticles (NPs) can be incorporated within the hydrogels to form smart hydrogel nanocomposites, benefiting the advantages of both counterparts and suitable for advanced anticancer applications. Despite many papers on non-peptide hydrogel nanocomposites, there is limited knowledge about peptide-based nanocomposites, specifically in anti-cancer drug delivery. The aim of this short but comprehensive review is, therefore, to focus attention on the synergies resulting from the combination of NPs with peptide-based hydrogels. This review, which includes a survey of recent advances in this kind of material, does not aim to be an exhaustive review of hydrogel technology, but it instead highlights recent noteworthy publications and discusses novel perspectives to provide valuable insights into the promising synergic combination of peptide hydrogels and NPs for the design of novel anticancer drug delivery systems.

7.
Gels ; 9(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623076

RESUMO

In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.

8.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446957

RESUMO

To date, most endocytosis studies in plant cells have focused on clathrin-dependent endocytosis, while limited evidence is available on clathrin-independent pathways. Since dynamin a is a key protein both in clathrin-mediated endocytosis and in clathrin-independent endocytic processes, this study investigated its role in the uptake of poly-(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The experiments were performed on cultured cells and roots of Arabidopsis thaliana. Dynasore was used to inhibit the activity of dynamin-like proteins to investigate whether PLGA NPs enter plant cells through a dynamin-like-dependent or dynamin-like-independent endocytic pathway. Observations were performed by confocal microscopy using a fluorescent probe, coumarin 6, loaded in PLGA NPs. The results showed that both cells and roots of A. thaliana rapidly take up PLGA NPs. Dynasore was administered at different concentrations and exposure times in order to identify the effective ones for inhibitory activity. Treatments with dynasore did not prevent the NPs uptake, as revealed by the presence of fluorescence emission detected in the cytoplasm. At the highest concentration and the longest exposure time to dynasore, the fluorescence of NPs was not visible due to cell death. Thus, the results suggest that, because the NPs' uptake is unaffected by dynasore exposure, NPs can enter cells and roots by following a dynamin-like-independent endocytic pathway.

9.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376359

RESUMO

After decades of utilization of fossil-based and environmentally hazardous compounds for wood preservation against fungal attack, there is a strong need to substitute those compounds with bio-based bioactive solutions, such as essential oils. In this work, lignin nanoparticles containing four essential oils from thyme species (Thymus capitatus, Coridothymus capitatus, T. vulgaris, and T. vulgaris Demeter) were applied as biocides in in vitro experiments to test their anti-fungal effect against two white-rot fungi (Trametes versicolor and Pleurotus ostreatus) and two brown-rot fungi (Poria monticola and Gloeophyllum trabeum). Entrapment of essential oils provided a delayed release over a time frame of 7 days from the lignin carrier matrix and resulted in lower minimum inhibitory concentrations of the essential oils against the brown-rot fungi (0.30-0.60 mg/mL), while for the white-rot fungi, identical concentrations were determined compared with free essential oils (0.05-0.30 mg/mL). Fourier Transform infrared (FTIR) spectroscopy was used to assess the fungal cell wall changes in the presence of essential oils in the growth medium. The results regarding brown-rot fungi present a promising approach for a more effective and sustainable utilization of essential oils against this class of wood-rot fungi. In the case of white-rot fungi, lignin nanoparticles, as essential oils delivery vehicles, still need optimization in their efficacy.

10.
J Funct Biomater ; 14(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37103323

RESUMO

Tissue and organ regeneration are challenging issues, yet they represent the frontier of current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold materials' definition. As well known, peptide hydrogels have attracted increasing attention in recent years thanks to significant properties such as biocompatibility, biodegradability, good mechanical stability, and tissue-like elasticity. Such properties make them excellent candidates for 3D scaffold materials. In this review, the first aim is to describe the main features of a peptide hydrogel in order to be considered as a 3D scaffold, focusing in particular on mechanical properties, as well as on biodegradability and bioactivity. Then, some recent applications of peptide hydrogels in tissue engineering, including soft and hard tissues, will be discussed to analyze the most relevant research trends in this field.

11.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984014

RESUMO

The recognized antibacterial properties of silver nanoparticles (AgNPs) characterize them as attractive nanomaterials for developing new bioactive materials less prone to the development of antibiotic resistance. In this work, we developed new composites based on self-assembling Fmoc-Phe3 peptide hydrogels impregnated with in situ prepared AgNPs. Different methodologies, from traditional to innovative and eco-sustainable, were compared. The obtained composites were characterized from a hydrodynamic, structural, and morphological point of view, using different techniques such as DLS, SEM, and rheological measurements to evaluate how the choice of the reducing agent determines the characteristics of AgNPs and how their presence within the hydrogel affects their structure and properties. Moreover, the antibacterial properties of these composites were tested against S. aureus, a major human pathogen responsible for a wide range of clinical infections. Results demonstrated that the hydrogel composites containing AgNPs (hgel@AgNPs) could represent promising biomaterials for treating S. aureus-related infections.

12.
J Mater Chem B ; 11(11): 2334-2366, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36847384

RESUMO

In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.


Assuntos
Anti-Infecciosos , Nanopartículas , Fotoquimioterapia , Nanopartículas/química , Titânio/química
13.
Gels ; 8(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354608

RESUMO

The present paper investigated the synthesis of peptide-based hydrogel composites containing photo-generated silver nanoparticles (AgNPs) obtained in the presence and absence of honey as tensile strength enhancer and hydrogel stabilizer. Fmoc-Phe and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator synthesis via an enzymatic method. In particular, we developed an in situ one-pot approach for preparing AgNPs inside peptide hydrogels using a photochemical synthesis, without any toxic reducing agents, with reaction yields up to 30%. The structure and morphology of the nanohybrids were characterized with different techniques such as FESEM, UV-Vis, DLS, SAXS and XPS. Moreover, the antibacterial activity of these hybrid biomaterials was investigated on a laboratory strain and on a clinical isolate of Staphylococcus aureus. Results demonstrated that honey increased both swelling ability and also mechanical stability of the hydrogel. Finally, a higher antibacterial effect of AgNPs in the hybrid was observed in the presence of honey. In particular, AgNPs/hgel and AgNPs/hgel-honey showed an enhanced antibacterial activity (3.12 mg/L) compared to the free form of AgNPs, alone or in combination with honey (6.25 mg/L) for both S. aureus strains.

14.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080191

RESUMO

Poly-(lactic-co-glycolic) acid (PLGA) is a biodegradable, biosafe, and biocompatible copolymer. The Aspergillus section Nigri causes otomycosis localized in the external auditory canal. In this research, Aspergillus brasiliensis, a species belonging to the Nigri section, was tested. Coumarin 6 and pterostilbene loaded in poly-(lactic-co-glycolic) acid nanoparticles (PLGA-coumarin6-NPs and PLGA-PTB-NPs) were tested for fungal cell uptake and antifungal ability against A. brasiliensis biofilm, respectively. Moreover, the activity of PLGA-PTB-NPs in inhibiting the A. brasiliensis infection was tested using Galleria mellonella larvae. The results showed a fluorescence signal, after 50 nm PLGA-coumarin6-NPs treatment, inside A. brasiliensis hyphae and along the entire thickness of the biofilm matrix, which was indicative of an efficient NP uptake. Regarding antifungal activity, a reduction in A. brasiliensis biofilm formation and mature biofilm with PLGA-PTB-NPs has been demonstrated. Moreover, in vivo experiments showed a significant reduction in mortality of infected larvae after injection of PLGA-PTB-NPs compared to free PTB at the same concentration. In conclusion, the PLGA-NPs system can increase the bioavailability of PTB in Aspergillus section Nigri biofilm by overcoming the biofilm matrix barrier and delivering PTB to fungal cells.


Assuntos
Nanopartículas , Ácido Poliglicólico , Antifúngicos/farmacologia , Aspergillus , Portadores de Fármacos , Glicóis , Ácido Láctico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Estilbenos
15.
Materials (Basel) ; 15(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079250

RESUMO

Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.

16.
Materials (Basel) ; 15(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955275

RESUMO

Gene delivery is the basis for developing gene therapies that, in the future, may be able to cure virtually any disease, including viral infections. The use of short interfering RNAs (siRNAs) targeting viral replication is a novel strategy for treating HIV-1 infection. In this study, we prepared chitosan particles containing siRNA tat/rev via ionotropic gelation. Chitosan-based particles were efficiently internalized by cells, as evidenced by fluorescence microscopy. The antiviral effect of chitosan-based particles was studied on the C8166 cell line infected with HIV-1 and compared with the use of commercial liposomes (ESCORT). A significant reduction in HIV replication was also observed in cells treated with empty chitosan particles, suggesting that chitosan may interfere with the early steps of the HIV life cycle and have a synergic effect with siRNA to reduce viral replication significantly.

17.
Sci Rep ; 12(1): 7989, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568696

RESUMO

Botrytis cinerea, responsible for grey mold diseases, is a pathogen with a broad host range, affecting many important agricultural crops, in pre and post harvesting of fruits and vegetables. Commercial fungicides used to control this pathogen are often subjected to photolysis, volatilization, degradation, leaching, and runoff during application. In this context, the use of a delivery system, based on poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) represents an innovative approach to develop new pesticide formulations to successfully fight B. cinerea infections. In order to study NPs uptake, B. cinerea conidia and mycelium were treated with PLGA NPs loaded with the high fluorescent probe coumarin 6 (Cu6-PLGA NPs) and analyzed under ApoTome fluorescence microscopy. The observations revealed that 50 nm Cu6-PLGA NPs penetrated into B. cinerea conidia and hyphae, as early as 10 min after administration. Pterostilbene, a natural compound, and fluopyram, a synthetic antifungal, were entrapped in PLGA NPs, added to B. cinerea conidia and mycelium, and their antifungal activity was tested. The results revealed that the compounds loaded in NPs exhibited a higher activity against B. cinerea. These results lay the foundations for the use of PLGA NPs as a new strategy in plant pest management.


Assuntos
Micoses , Nanopartículas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Botrytis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Esporos Fúngicos
18.
Materials (Basel) ; 14(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300811

RESUMO

18ß-glycyrrhetinic acid (GA) is a pentacyclic triterpene with promising hepatoprotective and anti-Hepatocellular carcinoma effects. GA low water solubility however reduces its biodistribution and bioavailability, limiting its applications in biomedicine. In this work we used core-shell NPs made of PolyD-L-lactide-co-glycolide (PLGA) coated with chitosan (CS), prepared through an osmosis-based methodology, to efficiently entrap GA. NPs morphology was investigated with SEM and TEM and their GA payload was evaluated with a spectrophotometric method. GA-loaded NPs were administered to HepG2 cells and their efficiency in reducing cell viability was compared with that induced by the free drug in in vitro tests. Cell viability was evaluated by the MTT assay, as well as with Electric Cells-Substrate Impedance Sensing (ECIS), that provided a real-time continuous monitoring. It was possible to correlate the toxic effect of the different forms of GA with the bioavailability of the drug, evidencing the importance of real-time tests for studying the effects of bioactive substances on cell cultures.

19.
Colloids Surf B Biointerfaces ; 207: 111989, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34303114

RESUMO

Hydrogels based on short peptide molecules are interesting biomaterials with wide present and prospective use in biotechnologies. A well-known possible drawback of these materials can be their limited mechanical performance. In order to overcome this problem, we prepared Fmoc-Phe3self-assembling peptides by a biocatalytic approach, and we reinforced the hydrogel with graphene oxide nanosheets. The formulation here proposed confers to the hydrogel additional physicochemical properties without hampering peptide self-assembly. We investigated in depth the effect of nanocarbon morphology on hydrogel properties (i.e. morphology, viscoelastic properties, stiffness, resistance to an applied stress). In view of further developments towards possible clinical applications, we have preliminarily tested the biocompatibility of the composites. Our results showed that the innovative hydrogel composite formulation based on FmocPhe3 and GO is a biomaterial with improved mechanical properties that appears suitable for the development of biotechnological applications.


Assuntos
Grafite , Hidrogéis , Peptídeos , Estudos Prospectivos
20.
Nanotechnology ; 32(9): 095102, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33120366

RESUMO

The goal of supporting and directing tissue regeneration requires the design of new, advanced materials, with features like biocompatibility, biodegradability and adequate mechanical properties. Our work was focused on developing a new injectable biomimetic composite material, based on a peptidic hydrogel and calcium phosphates with the aim of mimicking the chemical composition of natural bone tissue. Arg-Gly-Asp-grafted chitosan was used to promote cell adhesion. The obtained composite hydrogel was characterized with differential scanning calorimetry measurements, rheological analysis, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance measurements. The biological responsiveness was assessed using the MG-63 human osteoblast cell line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...