Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 583: 111769, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38423206

RESUMO

Oxygen (O2) regulated pathways modulate B cell activation, migration and proliferation during infection, vaccination, and other diseases. Modeling these pathways in health and disease is critical to understand B cell states and ways to mediate them. To characterize B cells by their activation of O2 regulated pathways we develop pathway specific discrete state models using previously published single-cell RNA-sequencing (scRNA-seq) datasets from isolated B cells. Specifically, Single Cell Boolean Omics Network Invariant-Time Analysis (scBONITA) was used to infer logic gates for known pathway topologies. The simplest inferred set of logic gates that maximized the number of "OR" interactions between genes was used to simulate B cell networks involved in oxygen sensing until they reached steady network states (attractors). By focusing on the attractors that best represented sequenced cells, we identified genes critical in determining pathway specific cellular states that corresponded to diseased and healthy B cell phenotypes. Specifically, we investigate the transendothelial migration, regulation of actin cytoskeleton, HIF1A, and Citrate Cycle pathways. Our analysis revealed attractors that resembled the state of B cell exhaustion in HIV+ patients as well as attractors that promoted anerobic metabolism, angiogenesis, and tumorigenesis in breast cancer patients, which were eliminated after neoadjuvant chemotherapy (NACT). Finally, we investigated the attractors to which the Azimuth-annotated B cells mapped and found that attractors resembling B cells from HIV+ patients encompassed a significantly larger number of atypical memory B cells than HIV- attractors. Meanwhile, attractors resembling B cells from breast cancer patients post NACT encompassed a reduced number of atypical memory B cells compared to pre-NACT attractors.


Assuntos
Neoplasias da Mama , Infecções por HIV , Humanos , Feminino , Algoritmos , Oxigênio , Redes Reguladoras de Genes
2.
J Proteome Res ; 22(5): 1546-1556, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37000949

RESUMO

Multiomics profiling provides a holistic picture of a condition being examined and captures the complexity of signaling events, beginning from the original cause (environmental or genetic), to downstream functional changes at multiple molecular layers. Pathway enrichment analysis has been used with multiomics data sets to characterize signaling mechanisms. However, technical and biological variability between these layered data limit an integrative computational analyses. We present a Boolean network-based method, multiomics Boolean Omics Network Invariant-Time Analysis (mBONITA), to integrate omics data sets that quantify multiple molecular layers. mBONITA utilizes prior knowledge networks to perform topology-based pathway analysis. In addition, mBONITA identifies genes that are consistently modulated across molecular measurements by combining observed fold-changes and variance, with a measure of node (i.e., gene or protein) influence over signaling, and a measure of the strength of evidence for that gene across data sets. We used mBONITA to integrate multiomics data sets from RAMOS B cells treated with the immunosuppressant drug cyclosporine A under varying O2 tensions to identify pathways involved in hypoxia-mediated chemotaxis. We compare mBONITA's performance with 6 other pathway analysis methods designed for multiomics data and show that mBONITA identifies a set of pathways with evidence of modulation across all omics layers. mBONITA is freely available at https://github.com/Thakar-Lab/mBONITA.


Assuntos
Multiômica , Proteômica , Proteômica/métodos , Transdução de Sinais/genética
3.
NPJ Syst Biol Appl ; 8(1): 35, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131068

RESUMO

Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality in an aging population of people living with HIV (PLWH). This elevated risk has been attributed to viral infection, anti-retroviral therapy, chronic inflammation, and lifestyle factors. However, the rates at which PLWH develop AS vary even after controlling for length of infection, treatment duration, and for lifestyle factors. To investigate the molecular signaling underlying this variation, we sequenced 9368 peripheral blood mononuclear cells (PBMCs) from eight PLWH, four of whom have atherosclerosis (AS+). Additionally, a publicly available dataset of PBMCs from persons before and after HIV infection was used to investigate the effect of acute HIV infection. To characterize dysregulation of pathways rather than just measuring enrichment, we developed the single-cell Boolean Omics Network Invariant Time Analysis (scBONITA) algorithm. scBONITA infers executable dynamic pathway models and performs a perturbation analysis to identify high impact genes. These dynamic models are used for pathway analysis and to map sequenced cells to characteristic signaling states (attractor analysis). scBONITA revealed that lipid signaling regulates cell migration into the vascular endothelium in AS+ PLWH. Pathways implicated included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling pathways in monocytes. Attractor analysis with scBONITA facilitated the pathway-based characterization of cellular states in CD8+ T cells and monocytes. In this manner, we identify critical cell-type specific molecular mechanisms underlying HIV-associated atherosclerosis using a novel computational method.


Assuntos
Aterosclerose , Infecções por HIV , Idoso , Aterosclerose/complicações , Aterosclerose/genética , Aterosclerose/metabolismo , Glucagon , Infecções por HIV/complicações , Humanos , Leucócitos Mononucleares/metabolismo , Lipídeos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
4.
Life (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013463

RESUMO

Coordinated migration of B cells within and between secondary lymphoid tissues is required for robust antibody responses to infection or vaccination. Secondary lymphoid tissues normally expose B cells to a low O2 (hypoxic) environment. Recently, we have shown that human B cell migration is modulated by an O2-dependent molecular switch, centrally controlled by the hypoxia-induced (transcription) factor-1α (HIF1A), which can be disrupted by the immunosuppressive calcineurin inhibitor, cyclosporine A (CyA). However, the mechanisms by which low O2 environments attenuate B cell migration remain poorly defined. Proteomics analysis has linked CXCR4 chemokine receptor signaling to cytoskeletal rearrangement. We now hypothesize that the pathways linking the O2 sensing molecular switch to chemokine receptor signaling and cytoskeletal rearrangement would likely contain phosphorylation events, which are typically missed in traditional transcriptomic and/or proteomic analyses. Hence, we have performed a comprehensive phosphoproteomics analysis of human B cells treated with CyA after engagement of the chemokine receptor CXCR4 with CXCL12. Statistical analysis of the separate and synergistic effects of CyA and CXCL12 revealed 116 proteins whose abundance is driven by a synergistic interaction between CyA and CXCL12. Further, we used our previously described algorithm BONITA to reveal a critical role for Lymphocyte Specific Protein 1 (LSP1) in cytoskeletal rearrangement. LSP1 is known to modulate neutrophil migration. Validating these modeling results, we show experimentally that LSP1 levels in B cells increase with low O2 exposure, and CyA treatment results in decreased LSP1 protein levels. This correlates with the increased chemotactic activity observed after CyA treatment. Lastly, we directly link LSP1 levels to chemotactic capacity, as shRNA knock-down of LSP1 results in significantly increased B cell chemotaxis at low O2 levels. These results directly link CyA to LSP1-dependent cytoskeletal regulation, demonstrating a previously unrecognized mechanism by which CyA modulates human B cell migration. Data are available via ProteomeXchange with identifier PXD036167.

5.
Bioinformatics ; 38(3): 869-871, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636843

RESUMO

SUMMARY: WikiPathways is a database of 2979 biological pathways across 31 species created using the drawing software PathVisio. Many of these pathways are not directly usable for network-based topological analyses due to differences in curation styles and drawings. We developed the WikiNetworks package to standardize and construct directed networks by combining geometric information and manual annotations from WikiPathways. WikiNetworks performs significantly better than existing tools. This enables the use of high-quality WikiPathways resource for network-based topological analysis of high-throughput data. AVAILABILITY AND IMPLEMENTATION: WikiNetworks is written in Python3 and is available on github.com/Thakar-Lab/wikinetworks and on PyPI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Bases de Dados Factuais
6.
BMC Immunol ; 21(1): 13, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32183695

RESUMO

BACKGROUND: Hypoxia is a potent molecular signal for cellular metabolism, mitochondrial function, and migration. Conditions of low oxygen tension trigger regulatory cascades mediated via the highly conserved HIF-1 α post-translational modification system. In the adaptive immune response, B cells (Bc) are activated and differentiate under hypoxic conditions within lymph node germinal centers, and subsequently migrate to other compartments. During migration, they traverse through changing oxygen levels, ranging from 1-5% in the lymph node to 5-13% in the peripheral blood. Interestingly, the calcineurin inhibitor cyclosporine A is known to stimulate prolyl hydroxylase activity, resulting in HIF-1 α destabilization and may alter Bc responses directly. Over 60% of patients taking calcineurin immunosuppressant medications have hypo-gammaglobulinemia and poor vaccine responses, putting them at high risk of infection with significantly increased morbidity and mortality. RESULTS: We demonstrate that O 2 tension is a previously unrecognized Bc regulatory switch, altering CXCR4 and CXCR5 chemokine receptor signaling in activated Bc through HIF-1 α expression, and controlling critical aspects of Bc migration. Our data demonstrate that calcineurin inhibition hinders this O 2 regulatory switch in primary human Bc. CONCLUSION: This previously unrecognized effect of calcineurin inhibition directly on human Bc has significant and direct clinical implications.


Assuntos
Agamaglobulinemia/imunologia , Linfócitos B/imunologia , Ciclosporina/efeitos adversos , Centro Germinativo/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/imunologia , Imunossupressores/efeitos adversos , Agamaglobulinemia/etiologia , Animais , Movimento Celular , Células Cultivadas , Feminino , Humanos , Hipóxia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR5/metabolismo , Transdução de Sinais
7.
PLoS Comput Biol ; 15(9): e1007317, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479446

RESUMO

Pathway analysis is widely used to gain mechanistic insights from high-throughput omics data. However, most existing methods do not consider signal integration represented by pathway topology, resulting in enrichment of convergent pathways when downstream genes are modulated. Incorporation of signal flow and integration in pathway analysis could rank the pathways based on modulation in key regulatory genes. This implementation can be facilitated for large-scale data by discrete state network modeling due to simplicity in parameterization. Here, we model cellular heterogeneity using discrete state dynamics and measure pathway activities in cross-sectional data. We introduce a new algorithm, Boolean Omics Network Invariant-Time Analysis (BONITA), for signal propagation, signal integration, and pathway analysis. Our signal propagation approach models heterogeneity in transcriptomic data as arising from intercellular heterogeneity rather than intracellular stochasticity, and propagates binary signals repeatedly across networks. Logic rules defining signal integration are inferred by genetic algorithm and are refined by local search. The rules determine the impact of each node in a pathway, which is used to score the probability of the pathway's modulation by chance. We have comprehensively tested BONITA for application to transcriptomics data from translational studies. Comparison with state-of-the-art pathway analysis methods shows that BONITA has higher sensitivity at lower levels of source node modulation and similar sensitivity at higher levels of source node modulation. Application of BONITA pathway analysis to previously validated RNA-sequencing studies identifies additional relevant pathways in in-vitro human cell line experiments and in-vivo infant studies. Additionally, BONITA successfully detected modulation of disease specific pathways when comparing relevant RNA-sequencing data with healthy controls. Most interestingly, the two highest impact score nodes identified by BONITA included known drug targets. Thus, BONITA is a powerful approach to prioritize not only pathways but also specific mechanistic role of genes compared to existing methods. BONITA is available at: https://github.com/thakar-lab/BONITA.


Assuntos
Biologia Computacional/métodos , Transdução de Sinais/genética , Software , Algoritmos , Linhagem Celular , Bases de Dados Genéticas , Sistemas de Liberação de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Análise de Sequência de RNA/métodos , Fatores de Tempo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...