Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 20(1): 411, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532220

RESUMO

BACKGROUND: The prevalence of healthcare-acquired infections (HAI) and rising levels of antimicrobial resistance places significant economic and public health burdens on modern healthcare systems. A group of highly drug resistant pathogens known as the ESKAPE pathogens, along with C. difficile, are the leading causes of HAIs. Interactions between patients, healthcare workers, and environmental conditions impact disease transmission. Studying pathogen transfer under varying contact scenarios in a controlled manner is critical for understanding transmission and disinfectant strategies. In lieu of human subject research, this method has the potential to contribute to modeling the routes of pathogen transmission in healthcare settings. METHODS: To overcome these challenges, we have developed a method that utilizes a synthetic skin surrogate to model both direct (skin-to-skin) and indirect (skin-to fomite-to skin) pathogen transfer between infected patients and healthy healthcare workers. This surrogate material includes a background microbiome community simulating typical human skin flora to more accurately mimic the effects of natural flora during transmission events. RESULTS: We demonstrate the ability to modulate individual bacterial concentrations within this microbial community to mimic bacterial concentrations previously reported on the hands of human subjects. We also explore the effect of various decontamination approaches on pathogen transfer between human subjects, such as the use of handwashing or surface disinfectants. Using this method, we identify a potential outlier, S. aureus, that may persist and retain viability in specific transfer conditions better than the overall microbial community during decontamination events. CONCLUSIONS: Our work describes the development of an in vitro method that uses a synthetic skin surrogate with a defined background microbiota to simulate skin-to-skin and skin-to fomite-to skin contact scenarios. These results illustrate the value of simulating a holistic microbial community for transfer studies by elucidating differences in different pathogen transmission rates and resistance to common decontamination practices. We believe this method will contribute to improvements in pathogen transmission modeling in healthcare settings and increase our ability to assess the risk associated with HAIs, although additional research is required to establish the degree of correlation of pathogen transmission by skin or synthetic alternatives.


Assuntos
Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Modelos Biológicos , Clostridioides difficile , Infecção Hospitalar/prevenção & controle , Descontaminação/métodos , Resistência Microbiana a Medicamentos , Fômites/microbiologia , Humanos , Viabilidade Microbiana , Microbiota , Pele/microbiologia , Especificidade da Espécie
2.
Nucleic Acids Res ; 43(Database issue): D698-706, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392426

RESUMO

Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases' interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species' omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net.


Assuntos
Bases de Dados Genéticas , Genoma Helmíntico , Nematoides/genética , Trematódeos/genética , Animais , Genômica , Humanos , Internet , Microbiota , Nematoides/metabolismo , Trematódeos/metabolismo , Infecções por Trematódeos/microbiologia
3.
Nat Genet ; 46(3): 261-269, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24441737

RESUMO

The hookworm Necator americanus is the predominant soil-transmitted human parasite. Adult worms feed on blood in the small intestine, causing iron-deficiency anemia, malnutrition, growth and development stunting in children, and severe morbidity and mortality during pregnancy in women. We report sequencing and assembly of the N. americanus genome (244 Mb, 19,151 genes). Characterization of this first hookworm genome sequence identified genes orchestrating the hookworm's invasion of the human host, genes involved in blood feeding and development, and genes encoding proteins that represent new potential drug targets against hookworms. N. americanus has undergone a considerable and unique expansion of immunomodulator proteins, some of which we highlight as potential treatments against inflammatory diseases. We also used a protein microarray to demonstrate a postgenomic application of the hookworm genome sequence. This genome provides an invaluable resource to boost ongoing efforts toward fundamental and applied postgenomic research, including the development of new methods to control hookworm and human immunological diseases.


Assuntos
Genoma Helmíntico , Necator americanus/genética , Animais , Caenorhabditis elegans/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Parasita/imunologia , Humanos , Masculino , Dados de Sequência Molecular , Necator americanus/crescimento & desenvolvimento , Necator americanus/imunologia , Necatoríase/imunologia , Necatoríase/parasitologia , Necatoríase/prevenção & controle , Gravidez , Especificidade da Espécie
4.
mBio ; 4(2)2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23462113

RESUMO

ABSTRACT Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts.


Assuntos
Especiação Genética , Genoma Bacteriano , Salmonella enterica/classificação , Salmonella enterica/genética , Composição de Bases , Genes Bacterianos , Filogenia , Recombinação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...