Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 25(12): 6800-7, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19441781

RESUMO

Solvation is an important phenomenon, especially in association with heterogeneous phase interactions. Coumarin C522, C(14)H(12)NO(2)F(3), is used as a fluorophore probe to study the interaction between coumarin and a reduced-charge montmorillonite (RCM) surface. Such hydrophilic and hydrophobic interactions are of interest for sorption processes in confined environments. The prepared RCM series with 0.00, 0.12, 0.26, 0.43, 0.66, and 0.97 Li(+) molar fractions provide different surface charges. The aqueous dispersion of the C522/water/RCM system is studied by using steady-state and time-resolved fluorescence spectroscopies. Both the Stokes shift and the dynamics of the solvation process varied as a function of surface charge. Steady-state fluorescence spectroscopy reveals that the C522 Stokes shift varies from 5,115 cm(-1) for the 0.00 Li(+) molar fraction to 3,988 cm(-1) for the 0.97 Li(+) molar fraction. Time-resolved fluorescence spectroscopy determines that the decay time T((1)) varies from 1.0 ps for the 0.00 Li(+) molar fraction to 3.6 ps for the 0.97 Li(+) molar fraction. Within the range of a few picoseconds, the dynamics of the water solvation shell may be described with H-bond rearrangement, modified with the different RCM surface charges. Two models illustrating the interactions between C522 and RCM in water are proposed which qualitatively describe the dynamics. To the best of our knowledge, this experiment is the first measurement of solvation dynamics on a montmorillonite structure surface using ultrafast laser fluorescence spectroscopy.


Assuntos
Bentonita/química , Cumarínicos/química , Solubilidade , Espectrometria de Fluorescência , Água/química
2.
J Chem Phys ; 124(12): 124511, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16599701

RESUMO

We study the information content of two-dimensional (2D) electronic photon-echo (PE) spectra, with special emphasis on their potential to distinguish, for waiting times T=0, between different conformations of electronically coupled symmetric dimers. The analysis is performed on the basis of an analytical formula for the frequency-domain 2D PE signal. The symmetric dimers are modeled in terms of two identical, energy-degenerate, excitonically coupled pairs of electronic states in the site representation. The spectra of conformationally weighted ensembles, composed of either two or four dimers, are compared with their one-dimensional linear absorption counterparts. In order to provide a realistic coupling pattern for the ensemble consisting of four dimers, excitonic couplings are estimated on the basis of optimized geometries and site-transition dipole moments, calculated by standard semiempirical methods for the bridged bithiophene structure 1,2-bithiophene-2-yl-ethane-1,2-dion (T2[CO]2). In the framework of our model, the highly readable 2D PE spectra can unambiguously identify spectral doublets, by relating peak heights and positions with mutual orientations of site-localized transition dipoles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...