Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Learn Mem ; 24(5): 191-198, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28416630

RESUMO

Avoiding unfavorable situations is a vital skill and a constant task for any animal. Situations can be unfavorable because they feature something that the animal wants to escape from, or because they do not feature something that it seeks to obtain. We investigate whether the microbehavioral mechanisms by which these two classes of aversion come about are shared or distinct. We find that larval Drosophila avoid odors either previously associated with a punishment, or previously associated with the lack of a reward. These two classes of conditioned aversion are found to be strikingly alike at the microbehavioral level. In both cases larvae show more head casts when oriented toward the odor source than when oriented away, and direct fewer of their head casts toward the odor than away when oriented obliquely to it. Thus, conditioned aversion serving two qualitatively different functions-escape from a punishment or search for a reward-is implemented by the modulation of the same microbehavioral features. These features also underlie conditioned approach, albeit with opposite sign. That is, the larvae show conditioned approach toward odors previously associated with a reward, or with the lack of a punishment. In order to accomplish both these classes of conditioned approach the larvae show fewer head casts when oriented toward an odor, and direct more of their head casts toward it when they are headed obliquely. Given that the Drosophila larva is a genetically tractable model organism that is well suited to study simple circuits at the single-cell level, these analyses can guide future research into the neuronal circuits underlying conditioned approach and aversion, and the computational principles of conditioned search and escape.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Punição , Recompensa , Animais , Comportamento Apetitivo , Aprendizagem da Esquiva , Drosophila melanogaster , Larva , Locomoção , Odorantes
2.
Learn Mem ; 22(5): 267-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25887280

RESUMO

How do animals adaptively integrate innate with learned behavioral tendencies? We tackle this question using chemotaxis as a paradigm. Chemotaxis in the Drosophila larva largely results from a sequence of runs and oriented turns. Thus, the larvae minimally need to determine (i) how fast to run, (ii) when to initiate a turn, and (iii) where to direct a turn. We first report how odor-source intensities modulate these decisions to bring about higher levels of chemotactic performance for higher odor-source intensities during innate chemotaxis. We then examine whether the same modulations are responsible for alterations of chemotactic performance by learned odor "valence" (understood throughout as level of attractiveness). We find that run speed (i) is neither modulated by the innate nor by the learned valence of an odor. Turn rate (ii), however, is modulated by both: the higher the innate or learned valence of the odor, the less often larvae turn whenever heading toward the odor source, and the more often they turn when heading away. Likewise, turning direction (iii) is modulated concordantly by innate and learned valence: turning is biased more strongly toward the odor source when either innate or learned valence is high. Using numerical simulations, we show that a modulation of both turn rate and of turning direction is sufficient to account for the empirically found differences in preference scores across experimental conditions. Our results suggest that innate and learned valence organize adaptive olfactory search behavior by their summed effects on turn rate and turning direction, but not on run speed. This work should aid studies into the neural mechanisms by which memory impacts specific aspects of behavior.


Assuntos
Quimiotaxia/fisiologia , Memória/fisiologia , Odorantes , Recompensa , Olfato/fisiologia , Animais , Comportamento Animal/fisiologia , Drosophila , Larva
3.
Front Behav Neurosci ; 8: 313, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309366

RESUMO

Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

4.
Learn Mem ; 18(11): 733-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22042602

RESUMO

Conditioned behavior as observed during classical conditioning in a group of identically treated animals provides insights into the physiological process of learning and memory formation. However, several studies in vertebrates found a remarkable difference between the group-average behavioral performance and the behavioral characteristics of individual animals. Here, we analyzed a large number of data (1640 animals) on olfactory conditioning in the honeybee (Apis mellifera). The data acquired during absolute and differential classical conditioning differed with respect to the number of conditioning trials, the conditioned odors, the intertrial intervals, and the time of retention tests. We further investigated data in which animals were tested for spontaneous recovery from extinction. In all data sets we found that the gradually increasing group-average learning curve did not adequately represent the behavior of individual animals. Individual behavior was characterized by a rapid and stable acquisition of the conditioned response (CR), as well as by a rapid and stable cessation of the CR following unrewarded stimuli. In addition, we present and evaluate different model hypotheses on how honeybees form associations during classical conditioning by implementing a gradual learning process on the one hand and an all-or-none learning process on the other hand. In summary, our findings advise that individual behavior should be recognized as a meaningful predictor for the internal state of a honeybee--irrespective of the group-average behavioral performance.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Animais , Extinção Psicológica , Masculino , Cadeias de Markov , Modelos Biológicos , Reprodutibilidade dos Testes
5.
Ultramicroscopy ; 108(6): 552-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17933465

RESUMO

Here we report a new combination of the patch-clamp technique with the atomic force microscope (AFM). A planar patch-clamp chip microstructured from borosilicate glass was used as a support for mechanical probing of living cells. The setup not only allows for immobilizing even a non-adherent cell for measurements of its mechanical properties, but also for simultaneously measuring the electrophysiological properties of a single cell. As a proof of principle experiment we measured the voltage-induced membrane movement of HEK293 and Jurkat cells in the whole-cell voltage clamp configuration. The results of these measurements are in good agreement with previous studies. By using the planar patch-clamp chip for immobilization, the AFM not only can image non-adhering cells, but also gets easily access to an electrophysiologically controlled cellular probe at low vibrational noise.


Assuntos
Microscopia de Força Atômica/métodos , Técnicas de Patch-Clamp/métodos , Células Imobilizadas/fisiologia , Eletrofisiologia , Desenho de Equipamento , Células HeLa , Humanos , Células Jurkat , Potenciais da Membrana , Microscopia de Força Atômica/instrumentação , Técnicas de Patch-Clamp/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...