Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794251

RESUMO

Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity. The related critical quality attributes (CQAs) were defined as complexation efficacy, complex stability, enzyme recovery and activity. Three risk assessment (RA) tools were used to identify and rank the critical process parameters (CPPs) and critical material attributes (CMAs). From this assessment, the pH of the medium, LYZ:SDS molar ratio and drying conditions were determined as high-risk factors that need to be investigated. To the best of our knowledge, for the first time, electrostatic titration was used as a smart approach to determine the optimum molar ratio at different pH values. Based on the predefined CQAs, pH 8 with an LYZ/SDS molar ratio of 1:8 was found to be the optimal condition for complexation efficiency and recovery (%) of a biologically active enzyme. A cost-effective drying process based on a ventilated oven was developed, which resulted in complex qualities comparable to those obtained by the commonly used freeze-drying method. In a nutshell, the optimum conditions for the preparation of the LYZ/SDS HIP complex were efficiently facilitated by the rational application of QbD principles and the utilization of efficient electrostatic titration and ventilated oven-drying methods.

2.
Eur J Pharm Sci ; 187: 106491, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301240

RESUMO

Parkinson's disease (PD) is neurodegenerative chronic illness which affects primarily the elderly over 45 years of age. The symptoms can be various, both non-motor and motor symptoms can appear. The biggest problem in the treatment of the disease is the difficulty in swallowing for the patients. However, buccal patches can solve this problem because the patients do not have to swallow the dosage form, and during application, the API can absorb from the area of the buccal mucosa quickly without causing a foreign body sensation. In our present study, we focused on the development of buccal polymer films with pramipexole dihydrochloride (PR). Films with different compositions were formulated and their mechanical properties and chemical interactions were investigated. The biocompatibility of the film compositions was examined on the TR146 buccal cell line. The permeation of PR was also monitored across the TR146 human cell line. It can be stated that the plasticizer can enhance the thickness and the breaking hardness of the films, while not decreasing their mucoadhesivity significantly. All formulations proved to have cell viability higher than 87%. Finally, we found the best composition (3% SA+1% GLY-PR-Sample1) which can be applied on the buccal mucosa in the treatment of PD.


Assuntos
Doença de Parkinson , Humanos , Idoso , Pramipexol , Doença de Parkinson/tratamento farmacológico , Administração Bucal , Portadores de Fármacos/química , Mucosa Bucal/metabolismo , Sistemas de Liberação de Medicamentos
3.
Heliyon ; 8(8): e10364, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36090229

RESUMO

Buccal drug administration is a less explored area, therefore researchers and companies focus on its research because of its innovative potential and opportunities. Buccal polymer films (patches) are considered to be an innovative form and have a great number of advantageous properties. Firstly, patients who suffer from swallowing problems and children can also apply them. The active pharmaceutical ingredient enters the systemic circulation directly without degradation and transformation. The aim of this study was to formulate buccal films with sodium alginate (SA) because it is a rarely used, innovative polymer for the formulation of buccal films. The mechanical, chemical properties and dosage forms of the prepared films were investigated with different methods. To formulate the films, cetirizine dihydrochloride (CTZ) was used as model drug, and glycerol (GLY) was added to make the films more elastic. The samples were prepared and stored at room temperature. As a result, it can be seen that the mechanical properties of all film compositions show good results, especially breaking hardness. The films with high SA concentration containing CTZ had appropriate mucoadhesion forces, so these samples are suitable for application on the buccal mucosa. The results of dissolution confirmed this finding. Finally, it can be said we formulated fast dissolving films and it can be concluded that the films prepared with 3% SA concentration containing 1% and 3% GLY can be recommended for buccal application.

4.
Pharmaceutics ; 14(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36015259

RESUMO

Oral mucoadhesive systems, such as polymer films, are among innovative pharmaceutical products. These systems can be applied in swallowing problems and can also be used in geriatrics and paediatrics. In our earlier work, we successfully formulated buccal mucoadhesive polymer films, which contained cetirizine-hydrochloride (CTZ) as the API. The present study focused on investigating the stability and permeability of the prepared films. The stability of the films was studied with an accelerated stability test. During the stability test, thickness, breaking hardness and in vitro mucoadhesivity were analysed. Furthermore, the interactions were studied with FT-IR spectroscopy, and the changes in the amount of the API were also monitored. Cytotoxicity and cell line permeability studies were carried out on TR 146 buccal cells. Compositions that can preserve more than 85% of the API after 6 months were found. Most of the compositions had a high cell viability of more than 50%. Citric acid (CA) decreased the stability and reduced every physical parameter of the films. However, cell line studies showed that the permeability of the films was enhanced. In our work, we successfully formulated CTZ-containing buccal films with adequate stability, high cell viability and appropriate absorption properties.

5.
J Pharm Sci ; 111(12): 3297-3303, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36007558

RESUMO

In this study, we present the effect of laser treatment on polymeric poly(lactic acid) drug carrier films. Our goal was to demonstrate the control of the drug-release kinetics of a polymeric carrier as a function of total absorbed laser energy. The controlled drug release kinetic was achieved by modifying the amorphous polymeric carrier's molecular weight via low energy density laser-exposure. According to gel permeation chromatography results, the decrease of molecular weight correlates with an increasing laser-shot number and shows a distinct saturation-like behavior. The dissolution test also suggests the presence of such dependency, as the rate and amount of caffeine released from the sample shows an increasing tendency up to 2000 laser shots. This fact proves that the laser treatment modifies the drug release. The approach presented here may complement other methods used for controlled drug release in various medical and pharmacological applications.


Assuntos
Excipientes , Lasers , Liberação Controlada de Fármacos , Luz , Polímeros
6.
Pharmaceutics ; 13(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925927

RESUMO

Currently, pharmaceutical companies are working on innovative methods, processes and products. Oral mucoadhesive systems, such as tablets, gels, and polymer films, are among these possible products. Oral mucoadhesive systems possess many advantages, including the possibility to be applied in swallowing problems. The present study focused on formulating buccal mucoadhesive polymer films and investigating the physical and physical-chemical properties of films. Sodium alginate (SA) and hydroxypropyl methylcellulose (HPMC) were used as film-forming agents, glycerol (GLY) was added as a plasticizer, and cetirizine dihydrochloride (CTZ) was used as an active pharmaceutical ingredient (API). The polymer films were prepared at room temperature with the solvent casting method by mixed two-level and three-level factorial designs. The thickness, tensile strength (hardness), mucoadhesivity, surface free energy (SFE), FTIR, and Raman spectra, as well as the dissolution of the prepared films, were investigated. The investigations showed that GLY can reduce the mucoadhesivity of films, and CTZ can increase the tensile strength of films. The distribution of CTZ proved to be homogeneous in the films. The API could dissolve completely from all the films. We can conclude that polymer films with 1% and 3% GLY concentrations are appropriate to be formulated for application on the buccal mucosa as a drug delivery system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...