Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2804: 195-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753149

RESUMO

Clinical diagnostics of infectious diseases via nucleic acid amplification tests (NAATs) depend on a separate step of isolation of nucleic acids from cells/viruses embedded in complex biological matrices. The most recent example has been reverse transcription polymerase chain reaction (RT-PCR) for amplification and detection of SARS-CoV-2 RNA for COVID-19 diagnostics. Kits for RNA extraction and purification are commercially available; however, their integration with amplification systems is generally lacking, resulting in two separate steps, i.e., sample preparation and amplification. This makes NAATs more time-consuming, requiring skilled personnel, and can increase the likelihood of contamination. Here, we describe a setup and methodology to perform the quick extraction and detection of nucleic acids in an integrated manner. In particular, we focus on the use of an immiscible filtration device for capture, isolation, concentration, amplification, and colorimetric detection of SARS-CoV-2 RNA.


Assuntos
COVID-19 , Filtração , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , RNA Viral/isolamento & purificação , RNA Viral/análise , RNA Viral/genética , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , COVID-19/diagnóstico , COVID-19/virologia , Filtração/instrumentação , Filtração/métodos , Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/instrumentação , Colorimetria/métodos , Colorimetria/instrumentação
2.
Open Res Afr ; 7: 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783971

RESUMO

Chlamydia trachomatis ( C. trachomatis) is a common sexually transmitted infection (STI). In 2019, the World Health Organization reported about 131 million infections. The majority of infected patients are asymptomatic with cases remaining undetected. It is likely that missed C. trachomatis infections contribute to preventable adverse health outcomes in women and children. Consequently, there is an urgent need of developing efficient diagnostic methods. In this study, genome-mining approaches to identify identical multi-repeat sequences (IMRS) distributed throughout the C. trachomatis genome were used to design a primer pair that would target regions in the genome. Genomic DNA was 10-fold serially diluted (100pg/µL to 1×10 -3pg/µL) and used as DNA template for PCR reactions. The gold standard PCR using 16S rRNA primers was also run as a comparative test, and products were resolved on agarose gel. The novel assay, C. trachomatis IMRS-PCR, had an analytical sensitivity of 4.31 pg/µL, representing better sensitivity compared with 16S rRNA PCR (9.5 fg/µL). Our experimental data demonstrate the successful development of lateral flow and isothermal assays for detecting C. trachomatis DNA with potential use in field settings. There is a potential to implement this concept in miniaturized, isothermal, microfluidic platforms, and laboratory-on-a-chip diagnostic devices for reliable point-of-care testing.

3.
Heliyon ; 10(6): e27344, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533083

RESUMO

Background: Curable sexually transmitted infections (STIs), such as Neisseria gonorrhoeae (N. gonorrhoeae), are a major cause of poor pregnancy outcomes. The infection is often asymptomatic in pregnant women, and a syndrome-based approach of testing leads to a missed diagnosis. Culture followed by microscopy is inadequate and time-consuming. The gold standard nucleic acid amplification tests require advanced infrastructure settings, whereas point-of-care tests are limited to immunoassays with sensitivities and specificities insufficient to accurately diagnose asymptomatic cases. This necessitates the development and validation of assays that are fit for purpose. Methods: We identified new diagnostic target biomarker regions for N. gonorrhoeae using an algorithm for genome mining of identical multi-repeat sequences (IMRS). These were then developed as DNA amplification primers to design better diagnostic assays. To test the primer pair, genomic DNA was 10-fold serially diluted (100 pg/µL to 1 × 10-3 pg/µL) and used as DNA template for PCR reactions. The gold standard PCR using 16S rRNA primers was also run as a comparative test, and both assay products were resolved on 1% agarose gel. Results: Our newly developed N. gonorrhoeae IMRS-PCR assay had an analytical sensitivity of 6 fg/µL representing better sensitivity than the 16S rRNA PCR assay with an analytical sensitivity of 4.3096 pg/µL. The assay was also successfully validated using clinical urethral swab samples. We further advanced this technique by developing an isothermal IMRS, which was both reliable and sensitive for detecting cultured N. gonorrhoeae isolates at a concentration of 38 ng/µL. Combining isothermal IMRS with a low-cost lateral flow assay, we were able to detect N. gonorrhoeae amplicons at a starting concentration of 100 pg/µL. Conclusion: Therefore, there is a potential to implement this concept within miniaturized, isothermal, microfluidic platforms, and laboratory-on-a-chip diagnostic devices for highly reliable point-of-care testing.

4.
Biosens Bioelectron ; 250: 116051, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301544

RESUMO

Agroathelia rolfsii (A. rolfsii) is a fungal infection and poses a significant threat to over 500 plant species worldwide. It can reduce crop yields drastically resulting in substantial economic losses. While conventional detection methods like PCR offer high sensitivity and specificity, they require specialized and expensive equipment, limiting their applicability in resource-limited settings and in the field. Herein, we present an integrated workflow with nucleic acid extraction and isothermal amplification in a lab-on-a-chip cartridge based on immiscible filtration assisted by surface tension (IFAST) to detect A. rolfsii fungi in soil for point-of-need application. Our approach enabled both DNA extraction of A. rolfsii from soil and subsequent colorimetric loop-mediated isothermal amplification (LAMP) to be completed on a single chip, termed IFAST-LAMP. LAMP primers targeting ITS region of A. rolfsii were newly designed and tested. Two DNA extraction methods based on silica paramagnetic particles (PMPs) and three LAMP assays were compared. The best-performing assay was selected for on-chip extraction and detection of A. rolfsii from soil samples inoculated with concentrations of 3.75, 0.375 and 0.0375 mg fresh weight per 100-g soil (%FW). The full on-chip workflow was achieved within a 1-h turnaround time. The platform was capable of detecting as low as 3.75 %FW at 2 days after inoculation and down to 0.0375 %FW at 3 days after inoculation. The IFAST-LAMP could be suitable for field-applicability for A. rolfsii detection in low-resource settings.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Tensão Superficial , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , Primers do DNA , Sensibilidade e Especificidade
5.
Heliyon ; 10(3): e24968, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318013

RESUMO

There is a growing need for easy-to-use, low cost and portable quantitative assays to determine active pharmaceutical ingredients in the pharmaceutical industry. Here, we developed a batch spectrophotometric method and a method employing a paper-based microfluidic device for the estimation of Amoxicillin (AMX) in pure solution and pharmaceutical preparations. The detection depends on the coupling reaction of Amoxicillin with diazotized sulfadimidine (DSDM) in an alkaline medium. The yellow azo dye reaction product was measured at λmax 425 nm and linearity was observed from 2 to 30 mg L-1 with a detection limit of 0.32 mg L-1 and a quantification limit of 1.2 mg L-1 was found. The reaction was then transferred onto the paper-based microfluidic device and a plateau change in color intensity was found above 10 mg L-1. Thus, the paper-based microfluidic device can be applied for the semi-quantitative determination of Amoxicillin in pure solution and commercial pharmaceutical products for rapid screening.

6.
Biomicrofluidics ; 17(5): 054104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840538

RESUMO

Despite the large number of microfluidic devices that have been described over the past decade for the study of tissues and organs, few have become widely adopted. There are many reasons for this lack of adoption, primarily that devices are constructed for a single purpose or because they are highly complex and require relatively expensive investment in facilities and training. Here, we describe a microphysiological system (MPS) that is simple to use and provides fluid channels above and below cells, or tissue biopsies, maintained on a disposable, poly(methyl methacrylate), carrier held between polycarbonate outer plates. All other fittings are standard Luer sizes for ease of adoption. The carrier can be coated with cells on both sides to generate membrane barriers, and the devices can be established in series to allow medium to flow from one cell layer to another. Furthermore, the carrier containing cells can be easily removed after treatment on the device and the cells can be visualized or recovered for additional off-chip analysis. A 0.4 µm membrane with cell monolayers proved most effective in maintaining separate fluid flows, allowing apical and basal surfaces to be perfused independently. A panel of different cell lines (Caco-2, HT29-MTX-E12, SH-SY5Y, and HUVEC) were successfully maintained in the MPS for up to 7 days, either alone or on devices connected in series. The presence of tight junctions and mucin was expressed as expected by Caco-2 and HT-29-MTX-E12, with Concanavalin A showing uniform staining. Addition of Annexin V and PI showed viability of these cells to be >80% at 7 days. Bacterial extracellular vesicles (BEVs) produced by Bacteroides thetaiotaomicron and labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiD) were used as a model component of the human colonic microbiota and were visualized translocating from an apical surface containing Caco-2 cells to differentiated SH-SY5Y neuronal cells cultured on the basal surface of connected devices. The newly described MPS can be easily adapted, by changing the carrier to maintain spheroids, pieces, or slices of biopsy tissue and joined in series to study a variety of cell and tissue processes. The cell layers can be made more complex through the addition of multiple cell types and/or different patterning of extracellular matrix and the ability to culture cells adjacent to one another to allow study of cell:cell transfer, e.g., passive or active drug transfer, virus or bacterial entry or BEV uptake and transfer.

7.
RSC Adv ; 13(40): 27696-27704, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37727313

RESUMO

The study of naturally circulating drug metabolites has been a focus of interest, since these metabolites may have different therapeutic and toxicological effects compared to the parent drug. The synthesis of metabolites outside of the human body is vital in order to conduct studies into the pharmacological activities of drugs and bioactive compounds. Current synthesis methods require significant purification and separation efforts or do not provide sufficient quantities for use in pharmacology experiments. Thus, there is a need for simple methods yielding high conversions whilst bypassing the requirement for a separation. Here we have developed and optimised flow chemistry methods in glass microfluidic reactors utilising surface-immobilised enzymes for sulfonation (SULT1a1) and glucuronidation (UGT1a1). Conversion occurs in flow, the precursor and co-factor are pumped through the device, react with the immobilised enzymes and the product is then simply collected at the outlet with no separation from a complex biological matrix required. Conversion only occurred when both the correct co-factor and enzyme were present within the microfluidic system. Yields of 0.97 ± 0.26 µg were obtained from the conversion of resorufin into resorufin sulfate over 2 h with the SULT1a1 enzyme and 0.47 µg of resorufin glucuronide over 4 h for UGT1a1. This was demonstrated to be significantly more than static test tube reactions at 0.22 µg (SULT1a1) and 0.19 µg (UGT1a1) over 4 h. With scaling out and parallelising, useable quantities of hundreds of micrograms for use in pharmacology studies can be synthesised simply.

8.
Anal Bioanal Chem ; 415(21): 5129-5137, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37198361

RESUMO

Gonorrhea is the second most common sexually transmitted infection (STI) with around 87 million cases worldwide estimated in 2016 by the World Health Organization. With over half of the cases being asymptomatic, potential life-threatening complications and increasing numbers of drug-resistant strains, routine monitoring of prevalence and incidence of infections are key preventive measures. Whilst gold standard qPCR tests have excellent accuracy, they are neither affordable nor accessible in low-resource settings. In this study, we developed a lab-on-a-chip platform based on microscale immiscible filtration to extract, concentrate and purify Neisseria gonorrhoeae DNA with an integrated detection assay based on colorimetric isothermal amplification. The platform was capable of detecting as low as 500 copies/mL from spiked synthetic urine and showed no cross-reactivity when challenged with DNAs from other common STIs. The credit card-size device allows DNA extraction and purification without power or centrifuges, and the detection reaction only needs a low-tech block heater, providing a straightforward and visual positive/negative result within 1 h. These advantages offer great potential for accurate, affordable and accessible monitoring of gonorrhea infection in resource-poor settings.


Assuntos
Infecções por Chlamydia , Gonorreia , Infecções Sexualmente Transmissíveis , Humanos , Neisseria gonorrhoeae/genética , Gonorreia/diagnóstico , Gonorreia/prevenção & controle , Colorimetria , Infecções por Chlamydia/diagnóstico , Chlamydia trachomatis/genética , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia
9.
Crit Rev Anal Chem ; : 1-15, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757081

RESUMO

Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.

10.
Talanta Open ; 6: 100166, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36406953

RESUMO

In response to the ongoing coronavirus disease 2019 (COVID-19) pandemic and disparities of vaccination coverage in low-and middle-income countries, it is vital to adopt a widespread testing and screening programme, combined with contact tracing, to monitor and effectively control the infection dispersion in areas where medical resources are limited. This work presents a lab-on-a-chip device, namely 'IFAST-LAMP-CRISPR', as an affordable, rapid and high-precision molecular diagnostic means for detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The herein proposed 'sample-to-answer' platform integrates RNA extraction, amplification and molecular detection with lateral flow readout in one device. The microscale dimensions of the device containing immiscible liquids, coupled with the use of silica paramagnetic beads and guanidine hydrochloride, streamline sample preparation (including RNA extraction, concentration and purification) in 15 min with minimal hands-on steps. The pre-amplification in combination with CRISPR-Cas12a detection assays targeting the nucleoprotein (N) gene achieved visual identification of ≥ 470 copies mL-1 genomic SARS-CoV-2 samples in 45 min. On-chip assays showed the ability to isolate and detect SARS-CoV-2 RNA from 100 genome copies mL-1 of replication-deficient viral particles in 1 h. This simple, affordable and integrated platform demonstrated a visual, faster, and yet specificity- and sensitivity-comparable alternative to the costly gold-standard reverse transcription-polymerase chain reaction (RT-PCR) assay, requiring only a simple heating source. Initial testing illustrates the platform viability both on nasopharyngeal swab and saliva samples collected using the easily accessible Swan-brand cigarette filter, providing a complete workflow for COVID-19 diagnostics in low-resource settings.

11.
ACS Sens ; 7(8): 2410-2419, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972061

RESUMO

We report the development of a distance-based paper analytical device combined with a hydrophilic bridge valve (B-dPAD) as a quantitative immunoassay method to monitor human interleukin-6 (IL-6) in human samples. Our device design features (i) a circular sample inlet zone, (ii) a circular capture zone with immobilized anti-IL-6 (anti-Ab1), and (iii) a detection zone channel coated with methylene blue (MB). Two hydrophilic valves are positioned between these three zones. IL-6 levels were determined quantitatively by measuring the extent of degradation of MB to a colorless product along the length of the detection zone channel. Following method optimization, we obtained a linear range from 0.05 to 25.0 pg/mL (R2 = 0.9995) and a detection limit (LOD) of 0.05 pg/mL by the naked-eye readout. This is directly within the clinically relevant range. The system does not require any external instrumentation, and the bridge valves can be easily connected and disconnected by a minimally trained operator. The total analysis time is 35 min, significantly reduced from a typical ELISA assay, which takes around 1 h since the B-dPAD workflow circumvents washing steps. The device was tested for IL-6 quantification in human saliva and urine samples of volunteers, with no significant difference found between our method and the standard clinical laboratory method at 95% confidence levels. Recoveries ranged from 98 to 105% with the highest standard deviation at 3.9%. Our B-dPAD immunodevice is therefore a promising approach for rapid IL-6 monitoring in the context of point-of-care diagnostics and analysis in resource-limited settings.


Assuntos
Interleucina-6 , Papel , Citocinas , Humanos , Imunoensaio/métodos , Sistemas Automatizados de Assistência Junto ao Leito
12.
PLoS One ; 16(12): e0260102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882681

RESUMO

Contamination of waterways is of increasing concern, with recent studies demonstrating elevated levels of antibiotics, antidepressants, household, agricultural and industrial chemicals in freshwater systems. Thus, there is a growing demand for methods to rapidly and conveniently monitor contaminants in waterways. Here we demonstrate how a combination of paper microfluidic devices and handheld mobile technology can be used by citizen scientists to carry out a sustained water monitoring campaign. We have developed a paper-based analytical device and a 3 minute sampling workflow that requires no more than a container, a test device and a smartphone app. The contaminant measured in these pilots are phosphates, detectable down to 3 mg L-1. Together these allow volunteers to successfully carry out cost-effective, high frequency, phosphate monitoring over an extended geographies and periods.


Assuntos
Água Doce/análise , Técnicas Analíticas Microfluídicas/instrumentação , Fosfatos/análise , Telefone Celular , Humanos , Limite de Detecção , Papel , Rios/química
13.
Biomicrofluidics ; 15(4): 044103, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34504636

RESUMO

The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.

14.
Anal Chim Acta ; 1177: 338758, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34482896

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the unprecedented global pandemic of coronavirus disease-2019 (COVID-19). Efforts are needed to develop rapid and accurate diagnostic tools for extensive testing, allowing for effective containment of the infection via timely identification and isolation of SARS-CoV-2 carriers. Current gold standard nucleic acid tests require many separate steps that need trained personnel to operate specialist instrumentation in laboratory environments, hampering turnaround time and test accessibility, especially in low-resource settings. We devised an integrated on-chip platform coupling RNA extraction based on immiscible filtration assisted by surface tension (IFAST), with RNA amplification and detection via colorimetric reverse-transcription loop mediated isothermal amplification (RT-LAMP), using two sets of primers targeting open reading frame 1a (ORF1a) and nucleoprotein (N) genes of SARS-CoV-2. Results were identified visually, with a colour change from pink to yellow indicating positive amplification, and further confirmed by DNA gel electrophoresis. The specificity of the assay was tested against HCoV-OC43 and H1N1 RNAs. The assay based on use of gene N primers was 100% specific to SARS-CoV-2 with no cross-reactivity to HCoV-OC43 nor H1N1. Proof-of-concept studies on water and artificial sputum containing genomic SARS-CoV-2 RNA showed our IFAST RT-LAMP device to be capable of extracting and detecting 470 SARS-CoV-2 copies mL-1 within 1 h (from sample-in to answer-out). IFAST RT-LAMP is a simple-to-use, integrated, rapid and accurate COVID-19 diagnostic platform, which could provide an attractive means for extensive screening of SARS-CoV-2 infections at point-of-care, especially in resource-constrained settings.


Assuntos
COVID-19 , Dispositivos Lab-On-A-Chip , RNA Viral , COVID-19/diagnóstico , Humanos , Vírus da Influenza A Subtipo H1N1 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/isolamento & purificação , SARS-CoV-2 , Sensibilidade e Especificidade
15.
Diagnostics (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359341

RESUMO

Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases requires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen-surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin-ligand interaction, supported by present high-throughput "omics" technologies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.

16.
Electrophoresis ; 42(21-22): 2246-2255, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34031893

RESUMO

Early detection of pathogenic microorganisms is pivotal to diagnosis and prevention of health and safety crises. Standard methods for pathogen detection often rely on lengthy culturing procedures, confirmed by biochemical assays, leading to >24 h for a diagnosis. The main challenge for pathogen detection is their low concentration within complex matrices. Detection of blood-borne pathogens via techniques such as PCR requires an initial positive blood culture and removal of inhibitory blood components, reducing its potential as a diagnostic tool. Among different label-free microfluidic techniques, inertial focusing on microscale channels holds great promise for automation, parallelization, and passive continuous separation of particles and cells. This work presents inertial microfluidic manipulation of small particles and cells (1-10 µm) in curved serpentine glass channels etched at different depths (deep and shallow designs) that can be exploited for (1) bacteria preconcentration from biological samples and (2) bacteria-blood cell separation. In our shallow device, the ability to focus Escherichia coli into the channel side streams with high recovery (89% at 2.2× preconcentration factor) could be applied for bacteria preconcentration in urine for diagnosis of urinary tract infections. Relying on differential equilibrium positions of red blood cells and E. coli inside the deep device, 97% red blood cells were depleted from 1:50 diluted blood with 54% E. coli recovered at a throughput of 0.7 mL/min. Parallelization of such devices could process relevant volumes of 7 mL whole blood in 10 min, allowing faster sample preparation for downstream molecular diagnostics of bacteria present in bloodstream.


Assuntos
Escherichia coli , Microfluídica , Bactérias , Células Sanguíneas , Separação Celular
17.
Anal Chim Acta ; 1136: 196-204, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33081945

RESUMO

There is growing demand for simple to operate, sensitive, on-site quantitative assays to investigate concentrations of drug molecules in pharmaceutical preparations for quality assurance. Here, we report on the development of two colorimetric analysis methods for the study the antibiotic doxycycline hyclate (DOX) and the nasal decongestant oxymetazoline hydrochloride (OXY), in solution as well as in their respective formulations. We compare a UV/vis spectrophotometry method with a color change recorded on a microfluidic paper-based analytical device (µPAD). Detection is based on the pharmaceutical compounds coupling with diazotized 4-aminoacetophenone (DAAP) under alkaline conditions to produce colored azo-dye products. These azo-compounds were monitored by absorbance at 425 nm for DOX and 521 nm for OXY, with linear calibration graphs in the concentration range of 0.5-35 mg L-1 (DOX) and 1.0-40 mg L-1 (OXY) and limits of detection of 0.24 mg L-1 (DOX) and 0.32 mg L-1 (OXY). For the µPAD method, color intensity was measured from photographs and a linear increase was observed at concentrations from above approximately 15 mg L-1 for both compounds and up to 35 mg L-1 for DOX and 40 mg L-1 for OXY. The developed methods were also applied to the formulated pharmaceuticals and no interference was found from the excipient. Thus, the paper-based device provides an inexpensive, simple alternative approach for use outside centralized laboratories with semi-quantitative capability.


Assuntos
Técnicas Analíticas Microfluídicas , Preparações Farmacêuticas , Doxiciclina , Microfluídica , Oximetazolina , Papel , Espectrofotometria
18.
Analyst ; 145(22): 7320-7329, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902519

RESUMO

Animal derived milk which is an important part of human diet due to its high nutritional value not only supports humans but also presents a growth environment for pathogenic bacteria. Milk may become contaminated with bacteria through udder infections or through contact within the dairy farm environment. Infections are treated with antibiotics, with ß-lactams most commonly used in veterinary medicine. However, their frequent use leads to the emergence of ß-lactam resistant bacterial strains, which causes difficulties in the treatment of infections in both humans and animals. Detection of pathogens as well as their antibiotic sensitivity is a pre-requisite for successful treatment and this is generally achieved with laboratory-based techniques such as growth inhibition assays, enzyme-linked immunosorbent assays (ELISA) or polymerase chain reactions (PCRs), which are unavailable in resource-limited settings. Here, we investigated paper-based analytical devices (µPADs) for the presumptive detection of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and their antibiotic resistant bacterial strains in milk samples. The µPADs were fabricated on filter paper using wax printing, and then impregnated with chromogenic substrates, which reacted with bacterial enzymes to form coloured products. Limits of detection of S. aureus and E. coli and their antibiotic resistant strains in milk samples were found to be 106 cfu mL-1. Enrichment of milk samples in a selective medium for 12 h enabled detection as low as 10 cfu mL-1. The paper devices tested on a set of 640 milk samples collected from dairy animals in Pakistan demonstrated more than 90% sensitivity and 100% selectivity compared to PCR, showing promise to provide inexpensive and portable diagnostic solutions for the detection of pathogenic bacteria in resource-limited settings.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Leite , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Colorimetria , Escherichia coli , Humanos , Leite/química , Staphylococcus aureus
19.
Biosensors (Basel) ; 10(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764518

RESUMO

Ferritin is a clinically important biomarker which reflects the state of iron in the body and is directly involved with anemia. Current methods available for ferritin estimation are generally not portable or they do not provide a fast response. To combat these issues, an attempt was made for lab-on-a-chip-based electrochemical detection of ferritin, developed with an integrated electrochemically active screen-printed electrode (SPE), combining nanotechnology, microfluidics, and electrochemistry. The SPE surface was modified with amine-functionalized graphene oxide to facilitate the binding of ferritin antibodies on the electrode surface. The functionalized SPE was embedded in the microfluidic flow cell with a simple magnetic clamping mechanism to allow continuous electrochemical detection of ferritin. Ferritin detection was accomplished via cyclic voltammetry with a dynamic linear range from 7.81 to 500 ng·mL-1 and an LOD of 0.413 ng·mL-1. The sensor performance was verified with spiked human serum samples. Furthermore, the sensor was validated by comparing its response with the response of the conventional ELISA method. The current method of microfluidic flow cell-based electrochemical ferritin detection demonstrated promising sensitivity and selectivity. This confirmed the plausibility of using the reported technique in point-of-care testing applications at a much faster rate than conventional techniques.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ferritinas/análise , Microfluídica , Eletroquímica , Eletrodos , Grafite , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Nanotecnologia
20.
Analyst ; 145(14): 4920-4930, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32495752

RESUMO

The miniaturisation of positron emission tomography (PET) radiotracer production is facilitating a move towards a dose-on-demand strategy that would enable a stratified approach to patient diagnostics, but while the on-chip synthesis steps have been demonstrated, the subsequent quality control (QC) testing steps have received much less attention. As part of the development of an integrated QC platform for PET tracers, we have developed two microfluidic electrochemical detectors for the pulsed amperometric detection (PAD) of carbohydrate-based radiotracers, with a particular view to the QC testing of the most important tracer, [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG). The first device employed a commercial screen-printed electrode (SPE) to enable a single-use format, while the second device incorporated wire electrodes for use as a more permanent fixture in a QC instrument. A flow-injection analysis (FIA)-style setup was used to inject boluses of d-glucose into the chips in a proxy for intended chromatographic separations prior to PAD. In proof-of-concept testing of the devices, the chips featuring the SPE and the wire electrodes yielded limits of detection of 0.1 ppm and 9 ppm, respectively, each below the required limits for [18F]FDG, and thus making both methodologies viable for the QC testing of PET radiotracers in a dose-on-demand format.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...