Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(2): e34495, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36874343

RESUMO

Introduction Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disorder caused by germline mutations in the serine-threonine kinase 11 (STK11) tumor suppressor gene. This syndrome is characterized by hamartomatous gastrointestinal polyps, mucocutaneous melanin pigmentation, and a higher risk of developing various cancers. Methods We summarized the clinical and molecular characteristics of five unrelated Thai patients with PJS. Denaturing high-performance liquid chromatography (DHPLC) screening, coupled with direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA), were applied for the molecular analysis of STK11. Results A total of four STK11 pathogenic changeswere identified in the five PJS patients, including two frameshift variants (a novel c.199dup, p.Leu67ProfsTer96 and a known c.834_835del, p.Cys278TrpfsTer6) and two types of copy number variations (CNV), exon 1 deletion and exons 2-3 deletion. Among reported STK11 exonic deletions, exon 1 and exons 2-3 deletions were found to be the two most commonly deleted exons. Conclusion All identified STK11 mutations were null mutations that were associated with more severe PJS phenotypes and cancers. This study broadens the phenotypic and mutational spectrum of STK11 in PJS.

2.
PLoS One ; 17(1): e0262415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051207

RESUMO

Published cerebrovascular injection techniques have mostly used decapitated, fresh cadavers or heads embalmed with 10% formaldehyde. There have been no reports using vascular-injected cadavers for head and neck surgical training models or using vascular injections in saturated salt method-embalmed cadavers. Thus, we performed vascular labeling of five saturated salt method-embalmed cadavers without decapitation. Latex mixed with red ink was injected into the common carotid artery via a 3D-printed vascular adapter. The injection force was provided by a peristaltic pump. Thyroidectomy, submandibular gland excision, neck dissection, parotidectomy, and mandibulotomy were performed on both sides of each cadaver (n = 10). The consistency of the cadavers was softer than fresh ones. Subcutaneous tissues were well preserved, and muscles were moist and elastic. Five physicians graded the resemblance of the heads and necks of the latex-injected, saturated salt method-embalmed, non-decapitated of five cadavers compared to living humans using a Likert scale from 0 (no resemblance) to 5 (maximum resemblance). Fifty-two percent of the head and neck region resemblance scale ratings were four or five. Although the cadavers were practical for head and neck surgical simulations, the brain parenchyma was only partially preserved and unsuitable for use. The most distal arterial branches reached by the injected latex were measured. The external caliber of the smallest vessels reached were lacrimal arteries (mean caliber ± SD, 0.04 ± 0.04 mm; 95% CI [0, 0.09]). There were no significant differences in the mean caliber of the smallest vessels reached between the left- and right-sided arterial branches (all p < 0.05).


Assuntos
Cadáver , Embalsamamento/métodos , Cabeça/cirurgia , Modelos Anatômicos , Pescoço/cirurgia , Treinamento por Simulação , Competência Clínica , Humanos , Látex , Tireoidectomia/educação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...