Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Agric Syst ; 180: 102790, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255892

RESUMO

In sub-Saharan Africa, there is considerable spatial and temporal variability in relations between nutrient application and crop yield, due to varying inherent soil nutrients supply, soil moisture, crop management and germplasm. This variability affects fertilizer use efficiency and crop productivity. Therefore, development of decision systems that support formulation and delivery of site-specific fertilizer recommendations is important for increased crop yield and environmental protection. Nutrient Expert (NE) is a computer-based decision support system, which enables extension advisers to generate field- or area-specific fertilizer recommendations based on yield response to fertilizer and nutrient use efficiency. We calibrated NE for major maize agroecological zones in Nigeria, Ethiopia and Tanzania, with data generated from 735 on-farm nutrient omission trials conducted between 2015 and 2017. Between 2016 and 2018, 368 NE performance trials were conducted across the three countries in which recommendations generated with NE were evaluated relative to soil-test based recommendations, the current blanket fertilizer recommendations and a control with no fertilizer applied. Although maize yield response to fertilizer differed with geographic location; on average, maize yield response to nitrogen (N), phosphorus (P) and potassium (K) were respectively 2.4, 1.6 and 0.2 t ha-1 in Nigeria, 2.3, 0.9 and 0.2 t ha-1 in Ethiopia, and 1.5, 0.8 and 0.2 t ha-1 in Tanzania. Secondary and micronutrients increased maize yield only in specific areas in each country. Agronomic use efficiencies of N were 18, 22 and 13 kg grain kg-1 N, on average, in Nigeria, Ethiopia and Tanzania, respectively. In Nigeria, NE recommended lower amounts of P by 9 and 11 kg ha-1 and K by 24 and 38 kg ha-1 than soil-test based and regional fertilizer recommendations, respectively. Yet maize yield (4 t ha-1) was similar among the three methods. Agronomic use efficiencies of P and K (300 and 250 kg kg-1, respectively) were higher with NE than with the blanket recommendation (150 and 70 kg kg-1). In Ethiopia, NE and soil-test based respectively recommended lower amounts of P by 8 and 19 kg ha-1 than the blanket recommendations, but maize yield (6 t ha-1) was similar among the three methods. Overall, fertilizer recommendations generated with NE maintained high maize yield, but at a lower fertilizer input cost than conventional methods. NE was effective as a simple and cost-effective decision support tool for fine-tuning fertilizer recommendations to farm-specific conditions and offers an alternative to soil testing, which is hardly available to most smallholder farmers.

2.
Sci Rep ; 9(1): 3589, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837657

RESUMO

A large number of on-farm experiments (n = 5556) were collected for the period 2000-2015 from the major rice (Oryza sativa L.) producing regions in China, to study the spatial variability of attainable yield, yield response, relative yield and fertilizer requirements at regional scale, by coupling geographical information system with the Nutrient Expert for Rice decision support system. Results indicated that average attainable yield was 8.8 t ha-1 across all sites, with 18.3% variation. There were large variations in yield response to nitrogen (N), phosphorus (P), and potassium (K) fertilizer application with coefficients of variation of 39.2%, 57.0%, and 53.4%, and the sites of 73.4%, 85.8%, and 87.6% in the study area ranged from 2.0 to 3.0, from 0.7 to 1.3, and from 0.7 to 1.3 t ha-1, respectively. Mapping the spatial variability of relative yield to N, P, and K indicated that the sites of 78.6%, 92.4%, and 88.7% in the study area ranged from 0.65 to 0.75, from 0.80 to 0.92, and from 0.84 to 0.92, respectively. The high yield response and low relative yield to N and P were mainly located in the Northeast (NE), Northwest (NW), and north of the Middle and Lower Reaches of Yangtze River (MLYR) regions. The spatial distribution of N, P, and K fertilizer requirements ranged 140-160 kg N ha-1, 50-70 kg P2O5 ha-1 and 35-65 kg K2O ha-1 which accounted for 66.4%, 85.5% and 73.0% of sites in the study area, respectively. This study analyzed the spatial heterogeneity of attainable yield, soil nutrient supply capacity and nutrient requirements based on a large database at regional or national scale by means of geographical information systems and fertilizer recommendation systems, which provided a useful tool to manage natural resources, increase efficiency and productivity, and minimize environmental risk.

3.
PLoS One ; 12(5): e0177509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28498839

RESUMO

Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear-parabolic-plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha-1 and the linear part was continuing until the yield reached about 60-70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean.


Assuntos
Glycine max/metabolismo , China , Fertilizantes/análise , Modelos Teóricos , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...