Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Physiol ; 11: 633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670085

RESUMO

The White Striping (WS) and Wooden Breast (WB) defects are two myopathic syndromes whose occurrence has recently increased in modern fast-growing broilers. The impact of these defects on the quality of breast meat is very important, as they greatly affect its visual aspect, nutritional value, and processing yields. The research conducted to date has improved our knowledge of the biological processes involved in their occurrence, but no solution has been identified so far to significantly reduce their incidence without affecting growing performance of broilers. This study aims to follow the evolution of molecular phenotypes in relation to both fast-growing rate and the occurrence of defects in order to identify potential biomarkers for diagnostic purposes, but also to improve our understanding of physiological dysregulation involved in the occurrence of WS and WB. This has been achieved through enzymatic, histological, and transcriptional approaches by considering breast muscles from a slow- and a fast-growing line, affected or not by WS and WB. Fast-growing muscles produced more reactive oxygen species (ROS) than slow-growing ones, independently of WS and WB occurrence. Within fast-growing muscles, despite higher mitochondria density, muscles affected by WS or WB defects did not show higher cytochrome oxidase activity (COX) activity, suggesting altered mitochondrial function. Among the markers related to muscle remodeling and regeneration, immunohistochemical staining of FN1, NCAM, and MYH15 was higher in fast- compared to slow-growing muscles, and their amount also increased linearly with the presence and severity of WS and WB defects, making them potential biomarkers to assess accurately their presence and severity. Thanks to an innovative histological technique based on fluorescence intensity measurement, they can be rapidly quantified to estimate the injuries induced in case of WS and WB. The muscular expression of several other genes correlates also positively to the presence and severity of the defects like TGFB1 and CTGF, both involved in the development of connective tissue, or Twist1, known as an inhibitor of myogenesis. Finally, our results suggested that a balance between TGFB1 and PPARG would be essential for fibrosis or adiposis induction and therefore for determining WS and WB phenotypes.

3.
Sci Rep ; 9(1): 14905, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624339

RESUMO

The broiler industry is facing an increasing prevalence of breast myopathies, such as white striping (WS) and wooden breast (WB), and the precise aetiology of these occurrences remains poorly understood. To progress our understanding of the structural changes and molecular pathways involved in these myopathies, a transcriptomic analysis was performed using an 8 × 60 K Agilent chicken microarray and histological study. The study used pectoralis major muscles from three groups: slow-growing animals (n = 8), fast-growing animals visually free from defects (n = 8), or severely affected by both WS and WB (n = 8). In addition, a weighted correlation network analysis was performed to investigate the relationship between modules of co-expressed genes and histological traits. Functional analysis suggested that selection for fast growing and breast meat yield has progressively led to conditions favouring metabolic shifts towards alternative catabolic pathways to produce energy, leading to an adaptive response to oxidative stress and the first signs of inflammatory, regeneration and fibrosis processes. All these processes are intensified in muscles affected by severe myopathies, in which new mechanisms related to cellular defences and remodelling seem also activated. Furthermore, our study opens new perspectives for myopathy diagnosis by highlighting fine histological phenotypes and genes whose expression was strongly correlated with defects.


Assuntos
Galinhas/genética , Redes Reguladoras de Genes , Doenças Musculares/veterinária , Músculos Peitorais/patologia , Doenças das Aves Domésticas/genética , Criação de Animais Domésticos , Animais , Biomarcadores/análise , Composição Corporal/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Perfilação da Expressão Gênica , Marcadores Genéticos , Carne/análise , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Músculos Peitorais/crescimento & desenvolvimento , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/patologia , Locos de Características Quantitativas , Índice de Gravidade de Doença
4.
BMC Genomics ; 19(1): 202, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554873

RESUMO

BACKGROUND: White striping (WS) is an emerging muscular defect occurring on breast and thigh muscles of broiler chickens. It is characterized by the presence of white striations parallel to the muscle fibers and has significant consequences for meat quality. The etiology of WS remains poorly understood, even if previous studies demonstrated that the defect prevalence is related to broiler growth and muscle development. Moreover, recent studies showed moderate to high heritability values of WS, which emphasized the role of genetics in the expression of the muscle defect. The aim of this study was to identify the first quantitative trait loci (QTLs) for WS as well as breast muscle yield (BMY) and meat quality traits using a genome-wide association study (GWAS). We took advantage of two divergent lines of chickens selected for meat quality through Pectoralis major ultimate pH (pHu) and which exhibit the muscular defect. An expression QTL (eQTL) detection was further performed for some candidate genes, either suggested by GWAS analysis or based on their biological function. RESULTS: Forty-two single nucleotide polymorphisms (SNPs) associated with WS and other meat quality traits were identified. They defined 18 QTL regions located on 13 chromosomes. These results supported a polygenic inheritance of the studied traits and highlighted a few pleiotropic regions. A set of 16 positional and/or functional candidate genes was designed for further eQTL detection. A total of 132 SNPs were associated with molecular phenotypes and defined 21 eQTL regions located on 16 chromosomes. Interestingly, several co-localizations between QTL and eQTL regions were observed which could suggest causative genes and gene networks involved in the variability of meat quality traits and BMY. CONCLUSIONS: The QTL mapping carried out in the current study for WS did not support the existence of a major gene, but rather suggested a polygenic inheritance of the defect and of other studied meat quality traits. We identified several candidate genes involved in muscle metabolism and structure and in muscular dystrophies. The eQTL analyses showed that they were part of molecular networks associated with WS and meat quality phenotypes and suggested a few putative causative genes.


Assuntos
Qualidade dos Alimentos , Glândulas Mamárias Animais/metabolismo , Carne/análise , Doenças Musculares/veterinária , Doenças das Aves Domésticas/genética , Locos de Características Quantitativas , Animais , Composição Corporal , Galinhas , Mapeamento Cromossômico , Feminino , Estudo de Associação Genômica Ampla , Glândulas Mamárias Animais/patologia , Carne/normas , Desenvolvimento Muscular/genética , Doenças Musculares/genética , Doenças Musculares/metabolismo , Músculos Peitorais/metabolismo , Fenótipo , Doenças das Aves Domésticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...