Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 19: 1166-1170, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30228999

RESUMO

We demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures. The SPR chip surface is made of a layer of gold, which represent a suitable material for direct analysis of the surface using SEM. The standard SPR chip used here (CM5-chip, GE Healthcare, Uppsala, Sweden) can easily be disassembled and directly analyzed by SEM. In order to verify the formation of amyloid fibrils in our experimental conditions we analyzed also in-solution produced structures by using Transmission Electron Microscopy (TEM). For further details and experimental findings, please refer to the article published in Journal of Molecular Biology, (Brännström K. et al., 2018) [1].

2.
J Mol Biol ; 430(17): 2722-2733, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29890120

RESUMO

The pathological Aß aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aß peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aß fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aß.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Pré-Albumina/metabolismo , Agregados Proteicos , Multimerização Proteica , Humanos , Cinética , Ligação Proteica
3.
J Mol Biol ; 430(13): 1940-1949, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29751013

RESUMO

Fibril formation of the amyloid-ß peptide (Aß) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aß are observed in vivo, but Aß1-40 and Aß1-42 are the dominant forms. The fibril architectures of Aß1-40 and Aß1-42 differ and Aß1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aß1-42 can be cross-templated and incorporated into the ends of Aß1-40 fibrils, while incorporation of Aß1-40 monomers into Aß1-42 fibrils is very poor. We also show that via cross-templating incorporated Aß monomers acquire the properties of the parental fibrils. The suppressed ability of Aß1-40 to incorporate into the ends of Aß1-42 fibrils and the capacity of Aß1-42 monomers to adopt the properties of Aß1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aß1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aß1-40 from adopting the fibrillar properties of Aß1-42 and exposes that the transfer of properties between amyloid-ß fibrils are determined by their path of formation.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Multimerização Proteica
4.
J Biol Chem ; 286(36): 31153-8, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768095

RESUMO

The γ-secretase complex is responsible for intramembrane processing of over 60 substrates and is involved in Notch signaling as well as in the generation of the amyloid ß-peptide (Aß). Aggregated forms of Aß have a pathogenic role in Alzheimer disease and, thus, reducing the Aß levels by inhibiting γ-secretase is a possible treatment strategy for Alzheimer disease. Regrettably, clinical trials have shown that inhibition of γ-secretase results in Notch-related side effects. Therefore, it is of great importance to find ways to inhibit amyloid precursor protein (APP) processing without disturbing vital signaling pathways such as Notch. Nicastrin (Nct) is part of the γ-secretase complex and has been proposed to be involved in substrate recognition and selection. We have investigated how the four evenly spaced and conserved cysteine residues in the Nct ectodomain affect APP and Notch processing. We mutated these cysteines to serines and analyzed them in cells lacking endogenous Nct. We found that two mutants, C213S (C2) and C230S (C3), differentially affected APP and Notch processing. Both the formation of Aß and the intracellular domain of amyloid precursor protein (AICD) were reduced, whereas the production of Notch intracellular domain (NICD) was maintained on a high level, although C230S (C3) showed impaired complex assembly. Our data demonstrate that single residues in a γ-secretase component besides presenilin are able to differentially affect APP and Notch processing.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/biossíntese , Glicoproteínas de Membrana/fisiologia , Mutação , Receptores Notch/metabolismo , Doença de Alzheimer/tratamento farmacológico , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Células Cultivadas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...