Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134847, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885583

RESUMO

Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.


Assuntos
Ivermectina , Estruturas Metalorgânicas , Spodoptera , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ivermectina/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/toxicidade , Animais , Concentração de Íons de Hidrogênio , Spodoptera/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/química , Composição de Medicamentos , Ácido Hialurônico/química , Ácido Hialurônico/toxicidade , Solanum lycopersicum
2.
Hypertension ; 79(3): 536-548, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34984912

RESUMO

BACKGROUND: Endothelial dysfunction enhances vascular inflammation, which initiates pulmonary arterial hypertension (PAH) pathogenesis, further induces vascular remodeling and right ventricular failure. Activation of inflammatory caspases is an important initial event at the onset of pyroptosis. Studies have shown that caspase-1-mediated pyroptosis has played a crucial role in the pathogenesis of PAH. However, the role of caspase-11, another inflammatory caspase, remains to be elucidated. Therefore, the purpose of this study was to clarify the role of caspase-11 in the development of PAH and its mechanism on endothelial cell function. METHODS: The role of caspase-11 in the progression of PAH and vascular remodeling was assessed in vivo. In vitro, the effect of caspase-4 silencing on the human pulmonary arterial endothelial cells pyroptosis was determined. RESULTS: We confirmed that caspase-11 and its human homolog caspase-4 were activated in PAH animal models and TNF (tumor necrosis factor)-α-induced human pulmonary arterial endothelial cells. Caspase-11-/- relieved right ventricular systolic pressure, right ventricle hypertrophy, and vascular remodeling in Sugen-5416 combined with chronic hypoxia mice model. Meanwhile, pharmacological inhibition of caspase-11 with wedelolactone exhibited alleviated development of PAH on the monocrotaline-induced rat model. Moreover, knockdown of caspase-4 repressed the onset of TNF-α-induced pyroptosis in human pulmonary arterial endothelial cells and inhibited the activation of pyroptosis effector GSDMD (gasdermin D) and GSDME (gasdermin E). CONCLUSIONS: These observations identified the critical role of caspase-4/11 in the pyroptosis pathway to modulate pulmonary vascular dysfunction and accelerate the progression of PAH. Our findings provide a potential diagnostic and therapeutic target in PAH.


Assuntos
Caspases Iniciadoras/metabolismo , Células Endoteliais/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Piroptose/fisiologia , Animais , Caspases Iniciadoras/genética , Linhagem Celular , Modelos Animais de Doenças , Humanos , Hipóxia , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Remodelação Vascular
3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(9): 1024-1034, 2020.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-33051415

RESUMO

OBJECTIVES: There is a significant increase of high-mobility group protein B1 (HMGB1) in plasma levels of patients with pulmonary hypertension, but the biological significance is still unclear. Anti-proliferative protein 1 (prohibitin 1, PHB1) is an important protein that maintains the homeostasis of vascular cells. This study aimed to investigate the effect of HMGB1 on pulmonary artery endothelial cells and the role of PHB1. METHODS: In vivo experiment: A rat model of pulmonary hypertension induced by monocrotaline (MCT) was constructed. The right ventricular systolic pressure (RVSP), and the weight ratio of right ventricle to left ventricle plus ventricular septum were used to evaluate the success of model. ELISA was used to detect the level of HMGB1 in rat's plasma. Western blotting was used to detect the level of PHB1 in rat's lung tissues. CD31 immunofluorescence was used to detect the integrity of pulmonary vascular endothelium. In vitro experiments: Pulmonary artery endothelial cell (PAEC) was incubated with HMGB1 to observe the effect of HMGB1 on PAEC injury. Overexpression and knockdown of PHB1 were conducted, and the role of PHB1 was investigated by detecting the levels of reative oxygen species and cytochrome c (cyto-c), and the activation of caspase-3. RESULTS: Compared with the control group, the level of HMGB1 in the plasma of rats with pulmonary hypertension was significantly increased (P<0.05), and the expression of PHB1 in the lung tissue was decreased accompanied with endothelial dysfunction (P<0.05); HMGB1 incubation damaged the pulmonary artery endothelium and down-regulated PHB1 expression (P<0.05), while overexpression of PHB1 reduced the PAEC damage and oxidative stress induced by HMGB1 (P<0.05). Meanwhile, PHB1 reduced HMGB1-induced cyto-c expression and caspase-3 cleavage by inhibiting oxidative stress (P<0.05). CONCLUSIONS: The down-regulation of PHB1 expression mediates HMGB1-induced PAEC injury, which is related to the induction of oxidative stress, the increase of cyto-c release, and the promotion of caspase-3 cleavage.


Assuntos
Proteína HMGB1 , Proteínas Repressoras , Animais , Células Endoteliais , Proteína HMGB1/genética , Humanos , Proibitinas , Artéria Pulmonar , Ratos , Proteínas Repressoras/genética
4.
Lipids Health Dis ; 16(1): 111, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606094

RESUMO

BACKGROUND: PCSK9 rs505151 and rs11591147 polymorphisms are identified as gain- and loss-of-function mutations, respectively. The effects of these polymorphisms on serum lipid levels and cardiovascular risk remain to be elucidated. METHODS: In this meta-analysis, we explored the association of PCSK9 rs505151 and rs11591147 polymorphisms with serum lipid levels and cardiovascular risk by calculating the standardized mean difference (SMD) and odds ratios (OR) with 95% confidence intervals (CI). RESULTS: Pooled results analyzed under a dominant genetic model indicated that the PCSK9 rs505151 G allele was related to higher levels of triglycerides (SMD: 0.14, 95% CI: 0.02 to 0.26, P = 0.021, I2 = 0) and low-density lipoproteins cholesterol (LDL-C) (SMD: 0.17, 95% CI: 0.00 to 0.35, P = 0.046, I2 = 75.9%) and increased cardiovascular risk (OR: 1.50, 95% CI: 1.19 to 1.89, P = 0.0006, I2 = 48%). The rs11591147 T allele was significantly associated with lower levels of total cholesterol (TC) and LDL-C (TC, SMD: -0.45, 95% CI: -0.57 to -0.32, P = 0.000, I2 = 0; LDL-C, SMD: -0.44, 95% CI: -0.55 to -0.33, P = 0.000, I2 = 0) and decreased cardiovascular risk (OR: 0.77, 95% CI: 0.60 to 0.98, P = 0.031, I2 = 59.9) in Caucasians. CONCLUSIONS: This study indicates that the variant G allele of PCSK9 rs505151 confers increased triglyceride (TG) and LDL-C levels, as well as increased cardiovascular risk. Conversely, the variant T allele of rs11591147 protects carriers from cardiovascular disease susceptibility and lower TC and LDL-C levels in Caucasians. These findings provide useful information for researchers interested in the fields of PCSK9 genetics and cardiovascular risk prediction not only for designing future studies, but also for clinical and public health applications.


Assuntos
Doenças Cardiovasculares/genética , Estudos de Associação Genética , Lipídeos/genética , Pró-Proteína Convertase 9/genética , Alelos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , LDL-Colesterol/genética , Predisposição Genética para Doença , Humanos , Lipídeos/sangue , Mutação , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Triglicerídeos/sangue , Triglicerídeos/genética
5.
Medicine (Baltimore) ; 96(48): e8848, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29310364

RESUMO

Whether the baseline circulating proprotein convertase subtilisin/Kexin type 9 (PCSK9) concentration associates with cardiovascular risk remains uncertain. This study aimed to investigate the predictive value of circulating PCSK9 in cardiovascular risk prediction.Relevant studies were searched through the MEDLINE, EMBASE, and Cochrane Library databases. The relative risk (RR) and 95% confidence interval (CI) were pooled to evaluate the association between the circulating PCSK9 concentration and cardiovascular risk. Dose-response meta-analysis was also performed in this study.A total of 11 cohort studies with 13,761 participants were included. The RR for cardiovascular risk was 1.25 (95% CI: 1.14-1.38, P < .001, I = 25%) while compared highest to lowest PCSK9 concentration. Subgroup meta-analysis, which sorted by ethnicity, base risk characteristic, and follow-up time, presented consistent results that there was a pronounced association between highest PCSK9 concentration and cardiovascular risk, such relationship was not significant in the statin-taking subjects. Seven studies were included in dose-response meta-analysis, and a nonlinear association between PCSK9 concentration and cardiovascular risk was observed [(χ test for nonlinearity = 6.7, (df = 2), P = .036].This study suggests that high circulating PCSK9 concentration associates with significantly increased cardiovascular risk, and demonstrates for the first time that it is a nonlinear dose-response association between circulating PCSK9 concentration and cardiovascular risk. These results provide the evidence that PCSK9 is an independent risk factor beyond the traditional cardiovascular risk factors and indicates a potential role of PCSK9 measurement for medical decisions. The clinical value of PCSK9 measurement and the identification of risk threshold should be confirmed in appropriately designed clinical trials.


Assuntos
Doenças Cardiovasculares/sangue , Pró-Proteína Convertase 9/sangue , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...