Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(3): e2100566, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34813132

RESUMO

Although the preparation of nano-objects by emulsifier-free controlled/living radical emulsion polymerization has drawn much attention, the morphologies of these formed objects are difficult to predict and to reproduce because of the much more complex nucleation mechanisms of emulsion polymerization compared to only one self-assembling nucleation mechanism of controlled radical dispersion polymerization. The present study compares dispersion polymerization with emulsifier-free emulsion polymerization in terms of nucleation mechanism, polymerization kinetics, and disappearance behavior of the macrochain transfer agent, gel permeation chromatograms curves of the obtained block copolymer as well as the structural and morphological differences between the produced nano-objects on the basis of published data. Moreover, the effects of the inherently heterogeneous nature of emulsion polymerization on the mechanism of reversible addition-fragmentation transfer polymerization and the nano-object morphology are examined, and efficient agitation and adequate solubility of the core-forming monomer in water are identified as the most crucial factors for the fabrication of nonspherical nano-objects.


Assuntos
Polímeros , Água , Emulsões , Cinética , Polimerização
2.
ACS Appl Mater Interfaces ; 12(1): 1348-1358, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815411

RESUMO

CO2-responsive polymeric nano-objects with assembly-related aggregation-induced emission (AIE) are obtained via polymerization-induced self-assembly (PISA) of 2-(dimethylamino)ethyl methacrylate (DMAEMA), 2-(4-formylphenoxy)ethyl methacrylate (MAEBA), and 4-(1,2,2-triphenylvinyl)phenyl methacrylate (TPEMA). These nano-objects exhibit, depending on the feed of MAEBA, a morphology evolution process from spherical micelles to vesicles. Due to the presence of DMAEMA units, CO2 promotes morphology transformation of the nano-objects from spheres to a mixture of "jellyfish" and vesicles and vesicles to complex vesicles. Moreover, TPEMA endows the AIE feature to these nano-objects, offering a strategy to monitor the morphology evolution process in real time. Thus, this approach is significant for exploring the assembly mechanism of copolymer in polymerization-induced self-assembly and designing multistimuli-responsive polymeric nanomaterials with tunable morphologies and sizes.

3.
Macromol Rapid Commun ; 40(14): e1900164, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31090972

RESUMO

A simple and efficient method to construct a hyperbranched multicyclic polymer is introduced. First, a tailored trithiocarbonate with two terminal anthracene units and three azide groups is successfully synthesized, and this multifunctional trithiocarbonate is used as chain transfer agent (CTA) to afford anthracene-telechelic polystyrene (PS) via reversible addition-fragmentation chain transfer (RAFT) polymerization. After that, linear PS is irradiated under 365 nm UV light to achieve the cyclization process. The monocyclic polymer further reacts with sym-dibenzo-1,5-cyclooctadiene-3,7-diyne via "A2 +B3 " strategy based on a self-accelerating click reaction to produce hyperbranched multicyclic polymer. The structures and properties of the polymers are characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-vis spectrophotometry, and triple-detection size-exclusion chromatography (TD-SEC). The number of monocyclic units of the resultant hyperbranched multicyclic polymer reaches about 21 based on multi-angle laser light scattering (MALLS) measurements. The plot of intrinsic viscosity versus molecular weight reveals that the α value of the unique hyperbranched multicyclic polymer is lower than both hyperbranched polymers and cyclic polymers.


Assuntos
Química Click , Polímeros/química , Poliestirenos/química , Azidas/química , Ciclização , Peso Molecular , Polimerização , Tionas/química
4.
Macromol Rapid Commun ; 40(2): e1800279, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29968349

RESUMO

Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polimerização , Polímeros/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Técnicas de Química Sintética/métodos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Metacrilatos/química , Polímeros/síntese química
5.
Bioconjug Chem ; 29(9): 3203-3212, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30075069

RESUMO

In this study, an efficient method is proposed for the synthesis of polymer prodrug with acid-liable linkage via thiol-acrylate Michael addition reaction of the camptothecin with tethering acrylate group and polymer scaffold containing multiple thiol groups. The polymer scaffold P(HEO2MA)- b-P(HEMA-DHLA) is prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization of the methacrylate of lipoic acid (HEMA-LA) using poly(2-(2-hydroethoxy) ethyl methacrylate) (PHEO2MA) as macro-RAFT agent followed by reduction of the disulfides in lipoic acid (LA) groups to give polymer scaffold with dihydrolipoic acid (DHLA) pendent groups. Acrylate-tethering camptothecin (ACPT) is connected to P(HEO2MA)- b-P(HEMA-DHLA) via Michael addition reaction between thiol and acrylate with a high coupling efficiency (95%). Amphiphilic polymer prodrug P(HEO2MA)- b-P(HEMA-DHLA-CPT) spontaneously self-assembles into nanoparticles in an aqueous solution and exhibits a CPT loading content as high as 40.1%. The prodrug nanoparticles with the acid-liable ß-thiopropionate linkages can release CPT under acidic conditions, and the prodrug nanoparticles show similar cytotoxicity to HeLa cells as free CPT. Overall, the prodrug nanoparticles with high drug loading contents and acid-liable linkages are promising for pH-responsive anticancer therapy.


Assuntos
Acrilatos/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polímeros/síntese química , Pró-Fármacos/química , Compostos de Sulfidrila/química , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética
6.
J Mater Chem B ; 6(11): 1678-1687, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254284

RESUMO

A hybrid drug delivery system was successfully fabricated by attaching a camptothecin (CPT)-based polymeric prodrug onto the surface of silver nanoparticles (AgNPs). PEG was employed as a macro-RAFT agent in RAFT polymerization to synthesize a branched star copolymer, to which CPT is linked through the photo-responsive o-nitrobenzyl linkage. In vitro tests indicate that the fluorescence of CPT in the polymeric prodrug is quenched by AgNPs based on the nanomaterial surface energy transfer (NSET) effect and the fluorescence recovers when the CPT molecules are released from hybrid nanoparticles. Thus, the variation of fluorescence intensity is bound up with the drug release behaviours, which may enable this AgNP-based drug delivery system to trace the intracellular drug release process and observe the distribution of released CPT in cells.

7.
ACS Appl Mater Interfaces ; 9(46): 40887-40897, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29088537

RESUMO

A unique drug delivery system, in which silver nanoparticles (AgNPs) are covered with camptothecin (CPT)-based polymer prodrug, has been developed, and the polymer prodrug, in which the CPT is linked to the polymer side chains via an acid-labile ß-thiopropionate bond, is prepared by RAFT polymerization. For poly(2-(2-hydroxyethoxy)ethyl methacrylate-co-methacryloyloxy-3-thiahexanoyl-camptothecin)@AgNPs [P(HEO2MA-co-MACPT)@AgNPs], the polymer thickness on the AgNP surface is around 5.9 nm (TGA method). In vitro tests in buffer solutions at pH = 7.4 reveal that fluorescence of the CPT in the hybrid nanoparticles is quenched due to the nanoparticle surface energy transfer (NSET) effect, but under acidic conditions, the CPT fluorescence is gradually recovered with gradual release of the CPT molecules from the hybrid nanoparticles through cleavage of the acid-labile bond. The NSET "on" and "off" is induced by the CPT-AgNP distance change. This unique property makes it possible to track the CPT delivery and release process from the hybrid nanoparticles in the living cells in a real-time manner. The internalization and intracellular releasing tests of the hybrid nanoparticles in the HeLa cells demonstrate that the lysosome containing the hybrid nanoparticles displays CPT blue fluorescence due to release of the CPT under acidic conditions, and the drug-releasing kinetics shows fluorescence increase of the released CPT with incubation time. The cytotoxicity of hybrid nanoparticles is dependent on activity of the acid-labile bond. Therefore, this is a potential efficient drug delivery system in cancer therapy and a useful approach to study the mechanism of release process in the cells.


Assuntos
Nanopartículas Metálicas , Camptotecina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Polímeros , Pró-Fármacos , Prata
8.
ACS Appl Mater Interfaces ; 9(17): 15086-15095, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28418640

RESUMO

Intelligent vesicles are fabricated at up to 30% solid content via an approach of polymerization-induced self-assembly and reorganization (PISR). Upon irradiation with UV light (365 nm), light-triggered dimerization of the coumarin moieties anchored in the membrane leads to the membrane cross-linking of the vesicles, which endows the vesicles with superior structural stability. Due to the tertiary amine groups in the membrane, the vesicles go through a swelling/deswelling change upon switching the pH values. In acidic aqueous solution, the pores in the membrane of vesicles are opened, which is beneficial for transmembrane traffic. The pore size in the membrane of vesicles is in accordance with the extent of membrane cross-linking, which can be conveniently regulated by the irradiation time of UV light (365 nm). The size range of the substance for transmembrane traffic is effectively enlarged; even 15 nm gold nanoparticles can be postloaded into the vesicles with lower extents of the membrane cross-linking through the diffusion method. Although the pores in the vesicle membrane are opened in acidic aqueous solution, transmembrane traffic is inhibited for the electropositive substance because of electrostatic repulsion but is allowed for the electronegative substance. These reported vesicles herein may be the smartest artificial vesicles to date due to their multiple selective permeability.

9.
Biomacromolecules ; 18(4): 1210-1217, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28287252

RESUMO

An ingenious formulation of RAFT dispersion polymerization based on photosensitive monomers of 2-nitrobenzyl methacrylate (NBMA) and 7-(2-methacryloyloxy-ethoxy)-4-methyl-coumarin (CMA) is reported herein. Various morphologies, such as spherical micelle, nanoworm, lamella, and vesicle, are fabricated at up to 20% solids content. Photoinduced cleavage of the NBMA moieties and dimerization of the coumarin moieties are simultaneously triggered upon UV (365 nm) irradiation. The former endows the cores of the nano-objects with abundant carboxyl groups, resulting in the transformation of the hydrophobic cores to hydrophilic ones. The latter induces the core-cross-linking of the nano-objects, which endows the nano-objects with enhanced structural stability and prevents the nanoparticle-to-unimer disassembly. The resultant nano-objects exhibit superior structural stability and excellent performances for drug delivery, including high drug loadings, pH-stimuli release, and high-efficient endosomal escape.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Polimerização , Polímeros/química , Antineoplásicos/química , Doxorrubicina/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Metacrilatos/química , Micelas
10.
Polymers (Basel) ; 9(11)2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30965912

RESUMO

By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT) has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate) (PMMA) are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate) (PGMA), and major component of the obtained polymer has the structure, (CH3)2(CN)C-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

11.
Biomacromolecules ; 17(9): 2992-9, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27548375

RESUMO

A highly efficient strategy, polymerization-induced self-assembly (PISA) for fabrication of the polymeric drug delivery systems in cancer chemotherapy is reported. Diblock prodrug copolymer, PEG-b-P(MEO2MA-co-CPTM) was used as the macro-RAFT agent to fabricate prodrug nanoparticles through PISA. The advantages of fabricating intelligent drug delivery system via this approach are as following: (1) Simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation in one-pot at relatively high concentration (100 mg/mL); (2) Almost complete monomer conversion allows direct application of the resultant prodrug nanoparticles without further purification; (3) Robust structures of the resultant prodrug nanoparticles, because the cross-linker was used as the comonomer, resulted in core-cross-linking simultaneously with the formation of the prodrug nanoparticles; (4) The drug content in the resultant prodrug nanoparticles can be accurately modulated just via adjusting the feed molar ratio of MEO2MA/CPTM in the synthesis of PEG-b-P(MEO2MA-co-CPTM). The prodrug nanoparticles with similar diameters but various drug contents were obtained using different prodrug macro-CTA. In consideration of the long-term biological toxicity, the prodrug nanoparticles with higher drug content exhibit more excellent anticancer efficiency due to that lower dosage of them are enough for effectively killing HeLa cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Polímeros/química , Pró-Fármacos/farmacologia , Antineoplásicos Fitogênicos/química , Camptotecina/química , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Micelas , Nanopartículas/química , Polietilenoglicóis/química , Polimerização , Polímeros/administração & dosagem , Pró-Fármacos/química
12.
ACS Appl Mater Interfaces ; 8(28): 18347-59, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27399846

RESUMO

To study the influence of self-assembled morphologies on drug delivery, four different nano-objects, spheres, nanorods, nanowires, and vesicles having aldehdye-based polymer as core, were successfully prepared via alcoholic RAFT dispersion polymerization of p-(methacryloxyethoxy)benzaldehyde (MAEBA) using poly((N,N'-dimethylamino)ethyl methacrylate) (PDMAEMA) as a macro chain transfer agent (macro-CTA) for the first time. The morphologies and sizes of the four nano-objects were characterized by TEM and DLS, and the spheres with average diameter (D) of 70 nm, the nanorods with D of 19 nm and length of 140 nm, and the vesicles with D of 137 nm were used in the subsequent cellular internalization, in vitro release, and intracellular release of the drug. The anticancer drug doxorubicin (DOX) was conjugated onto the core polymers of nano-objects through condensation reaction between aldehyde groups of the PMAEBA with primary amine groups in the DOX. Because the aromatic imine is stable under neutral conditions, but is decomposed in a weakly acidic solution, in vitro release of the DOX from the DOX-loaded nano-objects was investigated in the different acidic solutions. All of the block copolymer nano-objects show very low cytotoxicity to HeLa cells up to the concentration of 1.2 mg/mL, but the DOX-loaded nano-objects reveal different cell viability and their IC50s increase as the following order: nanorods-DOX < vesicles-DOX < spheres-DOX. The IC50 of nanowires-DOX is the biggest among the four nano-objects owing to their too large size to be internalized. Endocytosis tests demonstrate that the internalization of vesicles-DOX by the HeLa cells is faster than that of the nanorods-DOX, and the spheres-DOX are the slowest to internalize among the studied nano-objects. Relatively more nanorods localized in the acidic organelles of the HeLa cells lead to faster intracellular release of the DOX, so the IC50 of nanorods is lower than that of the vesicles-DOX.


Assuntos
Benzaldeídos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Metacrilatos/química , Nanoestruturas/química , Nylons/química , Polímeros/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Benzaldeídos/administração & dosagem , Doxorrubicina/administração & dosagem , Células HeLa , Humanos , Metacrilatos/administração & dosagem , Nanoestruturas/administração & dosagem , Polimerização , Polímeros/administração & dosagem
13.
J Mater Chem B ; 4(1): 141-151, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262818

RESUMO

In order to develop pH- and redox-responsive unimolecular micelles composed of camptothecin (CPT)-conjugated hyperbranched star copolymers via acid-labile ß-thiopropionate linkage, a new monomer, methacryloyloxy-3-thiohexanoyl-CPT, is synthesized through conjugation of CPT with methacrylate viaß-thiopropionate linkage, and then used in synthesis of the CPT-conjugated hyperbranched star copolymers by two steps of atom transfer radical polymerization (ATRP): self-condensation vinyl polymerization of the CPT-based monomer, 2-hydroxypropyl methacrylate and inimer, and subsequent ATRP of oligo(ethylene glycol) methacrylate using the obtained hyperbranched polymers as the macroinitiator. The obtained polymers dissolve in water to form unimolecular micelles, and their release of CPT in water at various pHs and their anticancer efficacy are studied. The CPT-loaded unimolecular micelles with diameters of 3.56-6.08 nm are quite stable under neutral environment, and are easily triggered by mild acidic pH, such as 6.0 and 5.0. They can be easily internalized by the tumor cells, releasing the CPT. The CPT-conjugated unimolecular micelles via acid-labile ß-thiopropionate linkage have potential for application as tumor-targeted drug release systems.

14.
Macromol Rapid Commun ; 36(15): 1428-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26032959

RESUMO

Similar to the traditional self-assembly strategy, polymerization induced self-assembly and reorganization (PISR) can produce a myriad of polymeric morphologies through morphology transitions. Besides the chain length ratio (R) of the hydrophobic to the hydrophilic blocks, the chain mobility in the intermediate nano-objects, which is a requisite for morphology transition, is a determining factor in the formation of the final morphology. Although various morphologies have been fabricated, hexagonally packed hollow hoops (HHHs) with highly ordered internal structure have not, to the best of our knowledge, been prepared by PISR. In this article, the fabrication of HHHs through morphology transition from large compound vesicles to HHHs is reported. HHHs with highly regular internal structure may have significance in theoretical research and practical applications of nanomaterials.


Assuntos
Polímeros/química , Etanol/química , Interações Hidrofóbicas e Hidrofílicas , Polimerização
15.
Int J Nanomedicine ; 10: 3623-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056444

RESUMO

Redox-and pH-sensitive branched star polymers (BSPs), BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAIGP)(n)s, have been successively prepared by two steps of reversible addition-fragmentation chain transfer (RAFT) polymerization. The first step is RAFT polymerization of 2-(N,N-dimethylaminoethyl)methacrylate (DMAEMA) and p-(methacryloxyethoxy) benzaldehyde (MAEBA) in the presence of divinyl monomer, 2,2'-dithiodiethoxyl dimethacrylate (DTDMA). The resultant branched polymers were used as a macro-RAFT agent in the subsequent RAFT polymerization. After hydrolysis of the BSPs to form BP(DMAEMA-co-MAEBA-co-DTDMA)(PMAGP)(n)s (BSP-H), the anticancer drug doxorubicin (DOX) was covalently linked to branched polymer chains by reaction of primary amine of DOX and aldehyde groups in the polymer chains. Their compositions, structures, molecular weights, and molecular weight distributions were respectively characterized by nuclear magnetic resonance spectra and gel permeation chromatography measurements. The DOX-loaded micelles were fabricated by self-assembly of DOX-containing BSPs in water, which were characterized by transmission electron microscopy and dynamic light scattering. Aromatic imine linkage is stable in neutral water, but is acid-labile; controlled release of DOX from the BSP-H-DOX micelles was realized at pH values of 5 and 6, and at higher acidic solution, fast release of DOX was observed. In vitro cytotoxicity experiment results revealed low cytotoxicity of the BSPs and release of DOX from micelles in HepG2 and HeLa cells. Confocal laser fluorescence microscopy observations showed that DOX-loaded micelles have specific interaction with HepG2 cells. Thus, this type of BSP micelle is an efficient drug delivery system.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Antineoplásicos/química , Benzaldeídos/química , Cromatografia em Gel , Doxorrubicina/química , Células HeLa/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Hidrólise , Iminas/química , Espectroscopia de Ressonância Magnética , Metacrilatos/química , Micelas , Peso Molecular , Polimerização , Polímeros/síntese química
16.
Macromol Rapid Commun ; 34(17): 1387-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23881541

RESUMO

A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanopartículas/química , Polietilenoglicóis/química , Dióxido de Silício/química , Acrilatos/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Oxirredução
17.
Biomacromolecules ; 14(5): 1444-51, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23557092

RESUMO

Redox-responsive amphiphilic diblock copolymers, poly(6-O-methacryloyl-D-galactopyranose-co-2-(N,N-dimethylaminoethyl) methacrylate)-b-poly(pyridyl disulfide ethyl methylacrylate) (P(MAGP-co-DMAEMA)-b-PPDSMA) were obtained by deprotection of poly((6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-D-galactopyranose)-co-DMAEMA)-b-PPDSMA [P(MAlpGP-co-DMAEMA)-b-PPDSMA], which were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of PDSMA using P(MAlpGP-co-DMAEMA) as macro-RAFT agent. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies showed that diblock copolymers P(MAGP-co-DMAEMA)-b-PPDSMA can self-assemble into micelles. Doxorubicin (DOX) could be encapsulated by P(MAGP-co-DMAEMA)-b-PPDSMA upon micellization and released upon adding glutathione (GSH) into the micelle solution. The galactose functional groups in the PMAGP block had specific interaction with HepG2 cells, and P(MAGP-co-DMAEMA)-b-PPDSMA can act as gene delivery vehicle. So, this kind of polymer has potential applications in hepatoma-targeting drug and gene delivery and biodetection.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/síntese química , Ácidos Polimetacrílicos/síntese química , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Galactose/química , Técnicas de Transferência de Genes , Glutationa/química , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Micelas , Microscopia Eletrônica de Transmissão , Ácidos Polimetacrílicos/farmacologia
18.
J Am Chem Soc ; 134(51): 20581-4, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215055

RESUMO

Although photoluminescence of tertiary aliphatic amines has been extensively studied, the usage of this fundamental chromophore as a fluorescent probe for various applications has unfortunately not been realized because their uncommon fluorescence is easily quenched, and strong fluorescence has been observed only in vapor phase. The objective of this study is how to retain the strong fluorescence of tertiary amines in polymers. Tertiary amines as branching units of the hyperbranched poly(amine-ester) (HypET) display relatively strong fluorescence (Φ = 0.11-0.43). The linear polymers with tertiary amines in the backbone or as the side group are only very weakly fluorescent. The tertiary amine of HypET is easily oxidized under ambient conditions, and red-shifting of fluorescence for the oxidized products has been observed. The galactopyranose-modified HypET exhibits low cytotoxicity and bright cell imaging. Thus, this study opens a new route of synthesizing fluorescent materials for cell imaging, biosensing, and drug delivery.


Assuntos
Dendrímeros/análise , Corantes Fluorescentes/análise , Poliaminas/análise , Poliésteres/análise , Fluorescência , Células Hep G2 , Humanos , Microscopia Confocal
20.
Biomacromolecules ; 13(8): 2585-93, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22759087

RESUMO

Photo- and pH-responsive amphiphilic hyperbranched star copolymers, poly(6-O-methacryloyl-1,2;3,4-di-O-isopropylidene-d-galactopyranose)[poly(2-(N,N-dimethylaminoethyl) methacrylate)-co-poly(1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitro-spiro(2H-1-benzo-pyran-2,2'-indoline))](n)s [HPMAlpGP(PDMAEMA-co-PSPMA)(n)], were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of the DMAEMA and the SPMA using hyperbranched PMAlpGP as a macro RAFT agent. In aqueous solution, the copolymers self-assembled to form core-shell micelles with HPMAlpGP core and PDMAEMA-co-PSPMA shell. The hydrophobic fluorescent dye nitrobenzoxadiazolyl derivative (NBD) was loaded into the spiropyran-containing micelles. The obtained micelles not only have the photochromic properties, but also modulate the fluorescence of NBD through fluorescence resonance energy transfer (FRET), which was also observed in living cells. Slight fluorescence intensity decrease of the spiropyran in merocyanine (ME) form was observed after five UV-visible light irradiation cycles. The cytotoxicity of the HPMAlpGP(PDMAEMA-co-PSPMA)(n) micelles was lower than that of 25k PEI. All the results revealed that these photoresponsive nanoparticles are a good candidate for cell imaging and may find broad applications in biological areas such as biological diagnosis, imaging, and detection.


Assuntos
Benzopiranos/síntese química , Portadores de Fármacos/síntese química , Indóis/síntese química , Nitrocompostos/síntese química , Ácidos Polimetacrílicos/síntese química , Azóis/química , Benzopiranos/química , Benzopiranos/toxicidade , Sobrevivência Celular , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Células HeLa , Humanos , Indóis/química , Indóis/toxicidade , Metacrilatos/química , Micelas , Estrutura Molecular , Peso Molecular , Nitrocompostos/química , Nitrocompostos/toxicidade , Nitrobenzenos/química , Polimerização , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/toxicidade , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...