Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin J Integr Med ; 25(9): 677-683, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30656598

RESUMO

OBJECTIVE: To illustrate the molecular mechanisms underlying the therapeutic effects of electroacupuncture (EA) on knee osteoarthritis (OA). METHODS: Twenty-seven six-month-old New Zealand white rabbits were allocated into three groups in accordance with a random number table: normal group (no surgery-induced OA; without treatment), model group (surgery-induced OA; without treatment) and EA group [surgery-induced OA; received treatment with EA at acupoints Dubi (ST 35) and Neixiyan (EX-LE 5), 30 min twice a day]. After eight consecutive weeks of treatment, the histopathological alterations in cartilage were observed using optical microscopy and transmission electron microscopy, cartilage degeneration was evaluated by modified Mankin's score principles, the synovial fluid concentration of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-3 (MMP-3) were evaluated by enzyme-linked immunosorbent assay, and the protein expression levels of IL-1ß, IL-6, TNF-α, MMP-3, IκB kinase-ß (IKK-ß), nuclear factor of α light polypeptide gene enhancer in B-cells inhibitor α (IκB-α) and nuclear factor-κB (NF-κB) p65 were quantified by Western blot analysis. RESULTS: EA treatment significantly improved cartilage structure arrangement and reduced cellular degeneration. The IL-1ß, IL-6, TNF-α and MMP-3 of synovial fluid in the EA-treated group were significantly decreased compared with the model group (all P<0.01). Compared with the model group, the IL-1ß, IL-6, TNF-α, MMP-3, IKK-ß and NF-κB p65 protein expressions in cartilage of EA-treated group were significantly decreased (all P<0.01), whereas IκB-α expression was significantly up-regulated (P<0.01). CONCLUSION: EA treatment may delay cartilage degeneration by down-regulating inflammatory factors through NF-κB signaling pathway, which may, in part, explain its clinical efficacy in the treatment of knee OA.


Assuntos
Cartilagem Articular/patologia , Eletroacupuntura , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Condrócitos/patologia , Condrócitos/ultraestrutura , Quinase I-kappa B/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Coelhos , Líquido Sinovial/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Mol Med Rep ; 15(5): 3027-3034, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28358416

RESUMO

Cibotium barometz polysaccharides (CBPS) are one of the most important bioactive components extracted from the Cibotium barometz plant, which belongs to the Dicksoniaceae family. It has been widely used for the treatment of orthopedic diseases in traditional Chinese medicine. However, the molecular mechanisms behind the therapeutic effects of CBPS remain to be clarified. In the present study, the concentration of CBPS was detected by phenol-vitriol colorimetry. Furthermore, the effects stimulated by CBPS on the viability and G1/S cell cycle transition in primary chondrocytes from Sprague-Dawley rats were investigated. A cell viability assay demonstrated that chondrocyte proliferation may be enhanced by CBPS in a dose­ and time­dependent manner. The mechanism underlying the promotion of chondrocyte cell cycle was suggested to involve the stimulation of G1 to S phase transition. To further confirm the results, reverse transcription­quantitative polymerase chain reaction and western blot analyses were used to detect the expression of mRNA and protein levels of cyclin D1, cyclin­dependent kinase 4 and retinoblastoma protein. The results suggested that CBPS may stimulate chondrocyte proliferation via promoting G1/S cell cycle transition. Since osteoarthritis is characterized by deficient proliferation in chondrocytes, the present study indicates that CBPS may potentially serve as a novel method for the treatment of osteoarthritis.


Assuntos
Condrócitos/efeitos dos fármacos , Polissacarídeos/farmacologia , Traqueófitas/química , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fase G1/efeitos dos fármacos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/metabolismo , Fase S/efeitos dos fármacos , Regulação para Cima
3.
Mol Med Rep ; 12(2): 1769-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25891262

RESUMO

Diesun Miaofang (DSMF) is a traditional herbal formula, which has been reported to activate blood, remove stasis, promote qi circulation and relieve pain. DSMF holds a great promise for the treatment of traumatic injury in an integrative and holistic manner. However, its underlying mechanisms remain to be elucidated. In the present study, a systems pharmacology model, which integrated cluster ligands, human intestinal absorption and aqueous solution prediction, chemical space mapping, molecular docking and network pharmacology techniques were used. The compounds from DSMF were diverse in the clusters and chemical space. The majority of the compounds exhibited drug-like properties. A total of 59 compounds were identified to interact with 16 potential targets. In the herb-compound-target network, the majority of compounds acted on only one target; however, a small number of compounds acted on a large number of targets, up to a maximum of 12. The comparison of key topological properties in compound-target networks associated with the above efficacy intuitively demonstrated that potential active compounds possessed diverse functions. These results successfully explained the polypharmacological mechanism underlying the efficiency of DSMF for the treatment of traumatic injury as well as provided insight into potential novel therapeutic strategies for traumatic injury from herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas/química , Análise por Conglomerados , Bases de Dados de Compostos Químicos , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Medicina Tradicional Chinesa , Solubilidade , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...