Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Oncol ; 42: 100504, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37766930

RESUMO

Background & purpose: For the best possible outcomes from therapy, proximal femur bone cancers must be accurately classified. This work creates an artificial intelligence (AI) model based on plain radiographs to categorize bone tumor in the proximal femur. Materials and methods: A tertiary referral center's standard anteroposterior hip radiographs were employed. A dataset 538 images of the femur, including malignant, benign, and tumor-free cases, was employed for training the AI model. There is a total of 214 images showing bone tumor. Pre-processing techniques were applied, and DenseNet model utilized for classification. The performance of the DenseNet model was compared to that of human doctors using cross-validation, further enhanced by incorporating Grad-CAM to visually indicate tumor locations. Results: For the three-label classification job, the suggested method boasts an excellent area under the receiver operating characteristic (AUROC) of 0.953. It scored much higher (0.853) than the diagnosis accuracy of the human experts in manual classification (0.794). The AI model outperformed the mean values of the clinicians in terms of sensitivity, specificity, accuracy, and F1 scores. Conclusion: The developed DenseNet model demonstrated remarkable accuracy in classifying bone tumors in the proximal femur using plain radiographs. This technology has the potential to reduce misdiagnosis, particularly among non-specialists in musculoskeletal oncology. The utilization of advanced deep learning models provides a promising approach for improved classification and enhanced clinical decision-making in bone tumor detection.

3.
Comput Methods Programs Biomed ; 226: 107097, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36088814

RESUMO

PURPOSE: COVID-19 is a hot issue right now, and it's causing a huge number of infections in people, posing a grave threat to human life. Deep learning-based image diagnostic technology can effectively enhance the deficiencies of the current main detection method. This paper proposes a multi-classification model diagnosis based on segmentation and classification multi-task. METHOD: In the segmentation task, the end-to-end DRD U-Net model is used to segment the lung lesions to improve the ability of feature reuse and target segmentation. In the classification task, the model combined with WGAN and Deep Neural Network classifier is used to effectively solve the problem of multi-classification of COVID-19 images with small samples, to achieve the goal of effectively distinguishing COVID-19 patients, other pneumonia patients, and normal subjects. RESULTS: Experiments are carried out on common X-ray image and CT image data sets. The results display that in the segmentation task, the model is optimal in the key indicators of DSC and HD, and the error is increased by 0.33% and reduced by 3.57 mm compared with the original network U-Net. In the classification task, compared with SMOTE oversampling method, accuracy increased from 65.32% to 73.84%, F-measure increased from 67.65% to 74.65%, G-mean increased from 66.52% to 74.37%. At the same time, compared with other classical multi-task models, the results also have some advantages. CONCLUSION: This study provides new possibilities for COVID-19 image diagnosis methods, improves the accuracy of diagnosis, and hopes to provide substantial help for COVID-19 diagnosis.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Pulmão/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...