Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3719, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698001

RESUMO

Caustics occur in diverse physical systems, spanning the nano-scale in electron microscopy to astronomical-scale in gravitational lensing. As envelopes of rays, optical caustics result in sharp edges or extended networks. Caustics in structured light, characterized by complex-amplitude distributions, have innovated numerous applications including particle manipulation, high-resolution imaging techniques, and optical communication. However, these applications have encountered limitations due to a major challenge in engineering caustic fields with customizable propagation trajectories and in-plane intensity profiles. Here, we introduce the "compensation phase" via 3D-printed metasurfaces to shape caustic fields with curved trajectories in free space. The in-plane caustic patterns can be preserved or morphed from one structure to another during propagation. Large-scale fabrication of these metasurfaces is enabled by the fast-prototyping and cost-effective two-photon polymerization lithography. Our optical elements with the ultra-thin profile and sub-millimeter extension offer a compact solution to generating caustic structured light for beam shaping, high-resolution microscopy, and light-matter-interaction studies.

2.
Sci Adv ; 9(51): eadj9262, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117894

RESUMO

Flat optics consisting of nanostructures of high-refractive index materials produce lenses with thin form factors that tend to operate only at specific wavelengths. Recent attempts to achieve achromatic lenses uncover a trade-off between the numerical aperture (NA) and bandwidth, which limits performance. Here, we propose a new approach to design high-NA, broadband, and polarization-insensitive multilayer achromatic metalenses (MAMs). We combine topology optimization and full-wave simulations to inversely design MAMs and fabricate the structures in low-refractive index materials by two-photon polymerization lithography. MAMs measuring 20 µm in diameter operating in the visible range of 400 to 800 nm with 0.5 and 0.7 NA were achieved with efficiencies of up to 42%. We demonstrate broadband imaging performance of the fabricated MAM under white light and RGB narrowband illuminations. These results highlight the potential of the 3D-printed multilayer structures for realizing broadband and multifunctional meta-devices with inverse design.

3.
Nat Commun ; 14(1): 5876, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735573

RESUMO

Two-photon polymerization lithography is promising for producing three-dimensional structures with user-defined micro- and nanoscale features. Additionally, shrinkage by thermolysis can readily shorten the lattice constant of three-dimensional photonic crystals and enhance their resolution and mechanical properties; however, this technique suffers from non-uniform shrinkage owing to substrate pinning during heating. Here, we develop a simple method using poly(vinyl alcohol)-assisted uniform shrinking of three-dimensional printed structures. Microscopic three-dimensional printed objects are picked and placed onto a receiving substrate, followed by heating to induce shrinkage. We show the successful uniform heat-shrinking of three-dimensional prints with various shapes and sizes, without sacrificial support structures, and observe that the surface properties of the receiving substrate are important factors for uniform shrinking. Moreover, we print a three-dimensional mascot model that is then uniformly shrunk, producing vivid colors from colorless woodpile photonic crystals. The proposed method has significant potential for application in mechanics, optics, and photonics.

4.
Bioinspir Biomim ; 16(5)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34225261

RESUMO

Octopus suckers that possess the ability to actively control adhesion through muscle actuation have inspired artificial adhesives for safe manipulation of thin and delicate objects. However, the design of adhesives with fast adhesion switching speed to transport cargoes in confined spaces remains an open challenge. Here, we present an untethered magnetic adhesive pad combining the functionality of fast adhesion switching and remotely controlled locomotion. The adhesive pad can be activated from low-adhesion state to high-adhesion state by near infrared laser within 30 s, allowing to fulfill a high-throughput task of retrieving and releasing objects. Moreover, under the guidance of external magnetic field, the proposed pad is demonstrated to transport thin and fragile electronic components across a tortuous path, thus indicating its potential for dexterous delivery in complex working environments.


Assuntos
Adesivos , Locomoção , Eletrônica , Fenômenos Magnéticos , Fenômenos Físicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...