Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(14)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323829

RESUMO

It is well known that timely crop growth monitoring and accurate crop yield estimation at a fine scale is of vital importance for agricultural monitoring and crop management. Crop growth models have been widely used for crop growth process description and yield prediction. In particular, the accurate simulation of important state variables, such as leaf area index (LAI) and root zone soil moisture (SM), is of great importance for yield estimation. Data assimilation is a useful tool that combines a crop model and external observations (often derived from remote sensing data) to improve the simulated crop state variables and consequently model outputs like crop total biomass, water use and grain yield. In spite of its effectiveness, applying data assimilation for monitoring crop growth at the regional scale in China remains challenging, due to the lack of high spatiotemporal resolution satellite data that can match the small field sizes which are typical for agriculture in China. With the accessibility of freely available images acquired by Sentinel satellites, it becomes possible to acquire data at high spatiotemporal resolution (10-30 m, 5-6 days), which offers attractive opportunities to characterize crop growth. In this study, we assimilated remotely sensed LAI and SM into the Word Food Studies (WOFOST) model to estimate winter wheat yield using an ensemble Kalman filter (EnKF) algorithm. The LAI was calculated from Sentinel-2 using a lookup table method, and the SM was calculated from Sentinel-1 and Sentinel-2 based on a change detection approach. Through validation with field data, the inverse error was 10% and 35% for LAI and SM, respectively. The open-loop wheat yield estimation, independent assimilations of LAI and SM, and a joint assimilation of LAI + SM were tested and validated using field measurement observation in the city of Hengshui, China, during the 2016-2017 winter wheat growing season. The results indicated that the accuracy of wheat yield simulated by WOFOST was significantly improved after joint assimilation at the field scale. Compared to the open-loop estimation, the yield root mean square error (RMSE) with field observations was decreased by 69 kg/ha for the LAI assimilation, 39 kg/ha for the SM assimilation and 167 kg/ha for the joint LAI + SM assimilation. Yield coefficients of determination (R2) of 0.41, 0.65, 0.50, and 0.76 and mean relative errors (MRE) of 4.87%, 4.32%, 4.45% and 3.17% were obtained for open-loop, LAI assimilation alone, SM assimilation alone and joint LAI + SM assimilation, respectively. The results suggest that LAI was the first-choice variable for crop data assimilation over SM, and when both LAI and SM satellite data are available, the joint data assimilation has a better performance because LAI and SM have interacting effects. Hence, joint assimilation of LAI and SM from Sentinel-1 and Sentinel-2 at a 20 m resolution into the WOFOST provides a robust method to improve crop yield estimations. However, there is still bias between the key soil moisture in the root zone and the Sentinel-1 C band retrieved SM, especially when the vegetation cover is high. By active and passive microwave data fusion, it may be possible to offer a higher accuracy SM for crop yield prediction.

2.
PLoS One ; 8(2): e57794, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460907

RESUMO

Aerobactin genes are known to be present in virulent strains and absent from avirulent strains, but contributions of iucC and iucA, which are involved in aerobactin synthesis, to the pathogenicity of avian pathogenic Escherichia coli (APEC) have not been clarified. In this study, effects of double mutants (iucA/iutA or iucC/iutA) compared to those of single mutants (iucA, iucC or iutA) of aerobactin genes on the virulence of APEC strain E058 were examined both in vitro (aerobactin production, ingestion into HD-11 cells, survival in chicken serum) and in vivo (competitive growth against parental strain, colonization and persistence). In competitive co-infection assays, compared to the E058 parental strain, the E058ΔiucA mutant was significantly reduced in the liver, kidney, spleen (all P<0.01), heart and lung (both P<0.001). The E058ΔiutA mutant also was significantly reduced in the liver, lung, kidney (all P<0.01), heart and spleen (both P<0.001). The E058ΔiucC mutant was significantly attenuated in the heart and kidney (both P<0.05) and showed a remarkable reduction in the liver, spleen and lung (P<0.01); meanwhile, both E058ΔiucAΔiutA and E058ΔiucCΔiutA double mutants were sharply reduced as well (P<0.001). In colonization and persistence assays, compared with E058, recovered colonies of E058ΔiucA were significantly reduced from the lung, liver, spleen and kidney (P<0.01) and significantly reduced in the heart (P<0.001). E058ΔiutA was significantly reduced from the heart, lung, liver, spleen and kidney (P<0.01). E058ΔiucC, E058ΔiucAΔiutA and E058ΔiucCΔiutA were significantly decreased in all organs tested (P<0.001). These results suggest that iutA, iucA and iucC play important roles in the pathogenicity of APEC E058.


Assuntos
Galinhas/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/patogenicidade , Genes Bacterianos/genética , Ácidos Hidroxâmicos/metabolismo , Doenças das Aves Domésticas/microbiologia , Animais , Galinhas/sangue , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Organismos Livres de Patógenos Específicos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...