Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(9): e2300074, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880381

RESUMO

Biomimetic actuators are critical components of bionics research and have found applications in the fields of biomedical devices, soft robotics, and smart biosensors. This paper reports the first study of nanoassembly topology-dependent actuation and shape memory programming in biomimetic 4D printing. Multi-responsive flower-like block copolymer nanoassemblies (vesicles) are utilized as photocurable printing materials for digital light processing (DLP) 4D printing. The flower-like nanoassemblies enhance thermal stability, attributed to their surface loop structures on the shell surfaces. Actuators prepared from these nanoassemblies display topology-dependent bending in response to pH and temperature-programmable shape memory properties. Biomimetic octopus-like soft actuators are programmed with multiple actuation patterns, large bending angles (≈500°), excellent weight-to-lift ratios (≈60), and moderate response time (≈5 min). Thus, nanoassembly topology-dependent and shape-programmable intelligent materials are successfully developed for biomimetic 4D printing.


Assuntos
Biomimética , Materiais Inteligentes , Polímeros/química , Impressão Tridimensional , Concentração de Íons de Hidrogênio
2.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015512

RESUMO

Advances made in 3D printing have opened new avenues for innovation in dental, aerospace, soft robotics, thermal regulation, and flexible electronic devices [...].

3.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578002

RESUMO

Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.

4.
Chem Commun (Camb) ; 57(9): 1105-1108, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33443256

RESUMO

In the presence of alkynes (CH[triple bond, length as m-dash]C-R2), iodide chain-end polymers (Polymer-I) were successfully transformed to vinyl iodide chain-end polymers (polymer-CH[double bond, length as m-dash]CR2-I) in a single step via organocatalysis. This reaction is completely metal-free and easy to carry out without using special reagents or special conditions. The polymers encompassing polyacrylates and polymethacrylate, and additional functionalities (e.g., OH and CF3) were also incorporated into the R2 moiety. The obtained Polymer-CH[double bond, length as m-dash]CR2-I further served as a useful precursor for copper-catalyzed cross-coupling reactions with various thiols (R3-SH) to yield vinyl sulfide chain-end polymers (polymer-CH[double bond, length as m-dash]CR2-SR3) with various R3 moieties. Interestingly, under selected conditions, this organocatalysis also offered block-like copolymers containing a conjugated oligo-alkyne segment and a non-conjugated polyacrylate segment. Exploiting the unique structure, the block-like copolymer was used as an efficient dispersant of carbon nanotubes.

5.
Polymers (Basel) ; 12(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962059

RESUMO

Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples.

6.
Int J Bioprint ; 6(2): 258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782988

RESUMO

Composite hydrogels have gained great attention as three-dimensional (3D) printing biomaterials because of their enhanced intrinsic mechanical strength and bioactivity compared to pure hydrogels. In most conventional printing methods for composite hydrogels, particles are preloaded in ink before printing, which often reduces the printability of composite ink with little mechanical improvement due to poor particle-hydrogel interaction of physical mixing. In contrast, the in situ incorporation of nanoparticles into a hydrogel during 3D printing achieves uniform distribution of particles with remarkable mechanical reinforcement, while precursors dissolved in inks do not influence the printing process. Herein, we introduced a "printing in liquid" technique coupled with a hybridization process, which allows 3D freeform printing of nanoparticle-reinforced composite hydrogels. A viscoplastic matrix for this printing system provides not only support for printed hydrogel filaments but also chemical reactants to induce various reactions in printed objects for in situ modification. Nanocomposite hydrogel scaffolds were successfully fabricated through this 3D freeform printing of hyaluronic acid (HAc)-alginate (Alg) hydrogel inks through a two-step crosslinking strategy. The first ionic crosslinking of Alg provided structural stability during printing, while the secondary crosslinking of photo-curable HAc improved the mechanical and physiological stability of the nanocomposite hydrogels. For in situ precipitation during 3D printing, phosphate ions were dissolved in the hydrogel ink and calcium ions were added to the viscoplastic matrix. The composite hydrogels demonstrated a significant improvement in mechanical strength, biostability, as well as biological performance compared to pure HAc. Moreover, the multi-material printing of composites with different calcium phosphate contents was achieved by adjusting the ionic concentration of inks. Our method greatly accelerates the 3D printing of various functional or hybridized materials with complex geometries through the design and modification of printing materials coupled with in situ post-printing functionalization and hybridization in reactive viscoplastic matrices.

7.
Polymers (Basel) ; 12(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370046

RESUMO

The first successful direct 3D printing, or additive manufacturing (AM), of heat-cured silicone meniscal implants, using biocompatible and bio-implantable silicone resins is reported. Silicone implants have conventionally been manufactured by indirect silicone casting and molding methods which are expensive and time-consuming. A novel custom-made heat-curing extrusion-based silicone 3D printer which is capable of directly 3D printing medical silicone implants is introduced. The rheological study of silicone resins and the optimization of critical process parameters are described in detail. The surface and cross-sectional morphologies of the printed silicone meniscus implant were also included. A time-lapsed simulation study of the heated silicone resin within the nozzle using computational fluid dynamics (CFD) was done and the results obtained closely resembled real time 3D printing. Solidworks one-convection model simulation, when compared to the on-off model, more closely correlated with the actual probed temperature. Finally, comparative mechanical study between 3D printed and heat-molded meniscus is conducted. The novel 3D printing process opens up the opportunities for rapid 3D printing of various customizable medical silicone implants and devices for patients and fills the current gap in the additive manufacturing industry.

8.
Biofabrication ; 11(2): 025008, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30708358

RESUMO

Biofabrication technologies have endowed us with the capability to fabricate complex biological constructs. However, cytotoxic biofabrication conditions have been a major challenge for their clinical application, leading to a trade-off between cell viability and scalability of biofabricated constructs. Taking inspiration from nature, we proposed a cell protection strategy which mimicks the protected and dormant state of plant seeds in adverse external conditions and their germination in response to appropriate environmental cues. Applying this bioinspired strategy to biofabrication, we successfully preserved cell viability and enhanced the seeding of cell-laden biofabricated constructs via a cytoprotective pyrogallol (PG)-alginate encapsulation system. Our cytoprotective encapsulation technology utilizes PG-triggered sporulation and germination processes to preserve cells, is mechanically robust, chemically resistant, and highly customizable to adequately match cell protectability with cytotoxicity of biofabrication conditions. More importantly, the facile and tunable decapsulation of our PG-alginate system allows for effective germination of dormant cells, under typical culture conditions. With this approach, we have successfully achieved a biofabrication process which is reproducible, scalable, and provided a practical solution for off-the-shelf availability, shipping and temporary storage of fabricated bio-constructs.


Assuntos
Citoproteção , Microtecnologia/métodos , Dormência de Plantas/fisiologia , Plantas/metabolismo , Alginatos/química , Animais , Biomimética , Morte Celular , Linhagem Celular , Sobrevivência Celular , Camundongos , Células NIH 3T3 , Imagem Óptica , Impressão Tridimensional , Pirogalol/química , Raios Ultravioleta
9.
ACS Appl Mater Interfaces ; 10(25): 21113-21124, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29869496

RESUMO

The breakthrough of genetic therapy is set back by the lack of suitable genetic vector systems. We present the development of permeability-tunable, capsule-like, polymeric, micron-sized, core-shell particles for delivery of recombinant nucleic acids into target cells. These particles were demonstrated to effectively release rod-shaped small hairpin RNA and to selectively retain the RNA-encoding DNA template, which was designed to form a bulky tripartite structure. Thus, they can serve as delivery vectors preloaded with cargo RNA or alternatively as RNA-producing micro-bioreactors. The internalization of particles by human tissue culture cells inversely correlated with particle size and with the cell to particle ratio, although at a higher than stoichiometric excess of particles over cells, cell viability was impaired. Among primary human peripheral blood mononuclear cells, up to 50% of the monocytes displayed positive uptake of particles. Finally, these particles efficiently delivered siRNA into HEK293T cells triggering functional knockdown of the target gene lamin A/C. Particle-mediated knockdown was superior to that observed after conventional siRNA delivery via lipofection. Core-shell particles protect encapsulated nucleic acids from degradation and target cell genomes from direct contact with recombinant DNA, thus representing a promising delivery vector system that can be explored for genetic therapy and vaccination.


Assuntos
Vetores Genéticos/genética , DNA , Células HEK293 , Humanos , Leucócitos Mononucleares , RNA Interferente Pequeno
10.
Int J Bioprint ; 4(1): 126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33102909

RESUMO

Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.

11.
ACS Appl Mater Interfaces ; 9(6): 5447-5456, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28054761

RESUMO

Hydrogels with complex internal structures are required for advanced drug delivery systems and tissue engineering or used as inks for 3D printing. However, hydrogels lack the tunability and diversity of polymeric shells and require complicated postsynthesis steps to alter its structure or properties. We report on the first integrated approach to assemble and design polymeric shells to take on various complex structures and functions such as multilayer nanofilms, multidensity immobilization matrix, or multiadhesive chromatography resins via the tuning of four assembly parameters: (a) poly(allylamine) (PA) concentration, (b) number of poly(allylamine)/poly(styrenesulfonic acid) (PA/PSSA) incubations, (c) poly(allylamine) (PA) to poly(ethylene glycol) (PEG) grafting ratio, and (d) % H2O present during assembly. Our approach combines the complex 3D structures of hydrogels with the versatility of self-assembled polymeric layers. Polymeric shells produced from our method have a highly uniform material distribution and well-defined shell boundaries. Shell thickness, density, and adhesive properties are easily tunable. By virtue of such unique material features, we demonstrate that polymeric shells can be designed to expand beyond its conventional function as thin films and serve as immobilization matrix, chromatography resins, or even reaction compartments. This technique could also uncover interesting perspectives in the development of novel multimaterials for 3D printing to synthesize scaffolds at a higher order of complexity.

12.
ACS Appl Mater Interfaces ; 8(2): 1493-500, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26691168

RESUMO

Mechanical properties of hydrogel particles are of importance for their interactions with cells or tissue, apart from their relevance to other applications. While so far the majority of works aiming at tuning particle mechanics relied on chemical cross-linking, we report a novel approach using inwards interweaving self-assembly of poly(allylamine) (PA) and poly(styrenesulfonic acid) (PSSA) on agarose gel beads. Using this technique, shell thicknesses up to tens of micrometers can be achieved from single-polymer incubations and accurately controlled by varying the polymer concentration or incubation period. We quantified the changes in mechanical properties of hydrogel core-shell particles. The effective elastic modulus of core-shell particles was determined from force spectroscopy measurements using the colloidal probe-AFM (CP-AFM) technique. By varying the shell thickness between 10 and 24 µm, the elastic modulus of particles can be tuned in the range of 10-190 kPa and further increased by increasing the layer number. Through fluorescence quantitative measurements, the polymeric shell density was found to increase together with shell thickness and layer number, hence establishing a positive correlation between elastic modulus and shell density of core-shell particles. This is a valuable method for constructing multidensity or single-density shells of tunable thickness and is particularly important in mechanobiology as studies have reported enhanced cellular uptake of particles in the low-kilopascal range (<140 kPa). We anticipate that our results will provide the first steps toward the rational design of core-shell particles for the separation of biomolecules or systemic study of stiffness-dependent cellular uptake.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Fenômenos Mecânicos , Polímeros/química , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Tamanho da Partícula , Poliaminas/química , Polímeros/síntese química , Poliestirenos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...